实际应用经常只会用到数据转换器模拟信号范围的一部分。如果在应用中只用到该范围的一半或者四分之一,则可以很容易地计算出有效分辨率。但如果遇到的是一个更复杂的分数,又该怎么办呢?本文将介绍在使用任何模拟信号范围时有效分辨率的计算。 电压裕量 模拟系统通常会留出一定的裕量,以针对增益误差、漂移、设计容限或设备调校不佳进行调整。在模拟世界和数字世界之间进行转换时,我们同样需要在数字世界保留一定的裕量。以0至10V的工业控制电压为例,如果我们只允许ADC量化最大10V的电压,那么,所有的下行设备必须限制在10V,否则将会丢失信息。因此,工业控制中通常留有5%甚至20%的裕量。 其他系统(例如视频系统)往往在视频信号中添加了同步信号。1VP-P视频信号中很可能包括700mV的有用视频信号和300mV的同步脉冲。如果利用12位ADC对这样的信号进行数字转换,视频本身将仅使用可用范围的70%,或者4096个可用代码中只使用2867个代码。现在,如果保留5%的裕量,则使用范围将会更低。 因此,在模拟和数字世界之间转换时,我们必须保证数字世界能够应对系统裕量。这一点很重要,但应对裕量却造成了有效分辨率的降低。 任意模拟范围的有效分辨率计算 我们首先从小孩的数学练习开始——真有这么简单吗? 我儿子最近问了我一道数学题,大致内容如下。我有一张巨大的纸,将其剪成两半;我将这两半摞在一起,那么总厚度将为原来的2倍。现在,我又将这叠纸剪成两半,并再次将它们摞在一起。此时的总厚度为最初单张纸的4倍。依此类推,重复以上过程多少次后,纸摞起来的高度可以到达月亮? 他需要推导的公式与计算有效分辨率的公式非常相似,公式中使用了对数。 以电压为0至10V、20%裕量的工业控制为例,实际范围为0至12V。如果采用16位DAC,那么0至10V信号的有效分辨率是多少(图1)?
图1:理想的16位DAC特性,为系统设计留有容限和裕量。 我们知道,对于R位分辨率的DAC,其阶梯数量为2R。因此,定义N为阶梯数量: 我们需要求出R,所以需要用到对数计算。在等式两侧取对数: 式子简化为: |