随着移动通信的迅速发展,无论何种无线通信的覆盖区域都将产生弱信号区和盲区,要架设模拟或数字基站成本太高,基础设施也比较复杂,为此提供一种成本低、架设简单,却具有小型基站功能的直放站是很有必要的。GSM移动通信系统在我国经过多年的发展,目前已经拥有最大的网络覆盖规模、最多的用户数、种类多样的业务,在我国移动通信市场中占有重要的地位。本文对GSM直放站的数字无线选频器进行设计,以达到低成本扩大无线网络覆盖范围和优化网络的目的。
1 系统总体结构
GSM900中上下行信道各120个,带宽为24 MHz,其中上行频段为885~909 MHz,下行频段为930~954 MHz,数字选频器工作效果示意图如图1所示。
如图1所示,数字选频器就是仅放大选中的频段,抑制未选中的频段,实现降低信道间干扰的目的。系统总体结构框图如图2所示。数字选频系统主要由A/D模块、FPGA可编程逻辑器件模块、D/A模块以及MCU管理模块四部分组成。
软件无线电的思想是将无线电收发信机的数字化点(A/D/A)尽可能靠近天线,理想的情况是在天线的后端进行射频采样,数字化之后,所有的处理都可以用很灵活的方法实现。但是由于目前ADC器件性能的限制,还无法达到在射频端进行数字化,在中频实现数字化是一个较妥的方案。
GSM直放站数字选频系统就是利用数字处理的手段实现滤波器功能,以替代现有直放站中的模拟选频模块。本系统通过AD6655接收下变频后的模拟中频信号,通过A/D采样将模拟信号转换为数字信号,采样频率为122.88 MHz。然后由FPGA按预定算法对来自AD6655的数字信号进行数字处理,处理后的结果再由AD9779转换成模拟信号。MCU通过SPI接口对AD6655,AD9779和AD9516的寄存器进行配置,并与FPGA之间进行通信。
2 系统硬件电路设计
2.1 系统电源设计
系统电源在整个系统中占有极其重要的地位,其设计的成功与否关系到整个系统能否稳定运行以及性能表现的好坏。由于本系统电平值比较多,同时基于系统性能、功耗的考虑,故采用以下方案给整个系统供电。系统电源总体设计框图如图3所示。
RT8289是一款DC/DC芯片,转换效率高达90%,内部具有缓启动功能,能在宽范围的输入电压下实现高达5 A的连续电流输出,输入电压范围为5.5~32 V,输出电压可调为1.222~26 V;LT1764电源芯片为LDO,输出电流理论上可达3 A,宽输入电压范围为2.7~20 V,输出电压可调为1.21~20 V,固定输出电压有:1.5 V,1.8 V,2.5 V,3.3 V。TPS74401电源芯片为LDO,支持输入电压低至0.9 V,输出电压为0.8~3.6 V可调,输出电流最大可达3 A,配置电路比较简单,而且在配置电路结构不变的情况下,可以通过调整配置电阻来改变输出电压,方便调试。
2.2 系统时钟模块设计
整个系统时钟主要由时钟芯片AD9516提供,AD9516是14路输出时钟发生器,配有片内集成锁相环(PLL)和电压控制振荡器(VCO),也可以使用最高2.4 GHz的外部VCO/VCXO。AD9516具有出色的低抖动和相位噪声特性,可极大地提升数据转换器的性能。AD9516提供6路LVPECL输出、4路LVDS输出和8路CMOS输出。LVPECL输出的工作频率达1.6 GHz,LVDS输出的工作频率达800 MHz,CMOS输出的工作频率达250 MHz。每对输出均有分频器,其分频比和粗调延迟(或相位)均可以设置。
|