◆ 散热 由于封装密度随系统复杂度增加而增加,散热成了系统硬件设计师必须面对的一项更加困难的挑战,同时高性能计算器件对电压调节的严格要求还需要电源位置与它尽量靠近。因此应将电源功耗降到最小并消除PCB和电源器件中的发热部位,避免使已经很热的计算器件温度再度增加,这一点是非常重要的。
◆ 输入噪声 随着3.3V成为许多通信子系统的主要供电电压,必须对3.3V电源线上的噪声进行抑制,以确保从该电源线获得电源供应的逻辑器件能够正确工作。由于降压开关电源中输入的是脉动电流,所以需要一个大电容或大LC滤波器来滤除输入噪声,滤波器的体积和成本一般随输出电流的增加和输入电压的降低而增大。
◆ 成本 现有的电源模块通常很贵,且对于大多数实际电源应用需求而言,标准电源模块性能常常又超过要求。而定制模块设计又需要一定时间,还会增加额外的成本,因此系统设计师需要寻求其它方案来降低成本。
新技术趋势
为了解决这些设计中的困难和挑战,通信系统应用的低电压大电流电源设计出现了下面一些新趋势。
◆ 板上电源(on-board power supply)逐渐流行 由于每个板上电源的额定功率可以很容易地根据实际功率需求来确定,因此它们的成本和体积可以降到最低。同时与标准电源模块相比,板上电源在技术上还有下面的几个优势。 ?负载调节更加理想。板上电源消除了电源输出与负载之间的互连电阻和电感,可以取得更理想的直流和瞬态调节效果。 ?效率更高。这种方案消除了电源连接器上的传导损耗,此外板上电源可以使用接地层和其它直流电源层传导直流电流,因为这些系统层阻抗低于小型电源模块阻抗,所以降低了PCB引线上的传导损耗。
|