目前用LM4F的MCU寫 五個不同儀器的資料可以由五個UART(UART1、UART2、UART3、UART4、UART5)的Rx接收
後送給UART0的Rx收然後傳給電腦人機(BCB5)
UART0的部分是使用udma寫的
以下是我擷取的一部分晶片程式碼
// The number of SysTick ticks per second used for the SysTick interrupt.
//*****************************************************************************
#define SYSTICKS_PER_SECOND 100
//*****************************************************************************
// The size of the UART transmit and receive buffers. They do not need to be
// the same size.
//*****************************************************************************
#define UART_TXBUF_SIZE 16
#define UART_RXBUF_SIZE 16
//*****************************************************************************
// The transmit and receive buffers used for the UART transfers. There is one
// transmit buffer and a pair of recieve ping-pong buffers.
//*****************************************************************************
//static unsigned char g_ucTxBuf[UART_TXBUF_SIZE];
static unsigned char g_ucRxBuf1[UART_RXBUF_SIZE];
static unsigned char g_ucRxBuf2[UART_RXBUF_SIZE];
static unsigned char g_ucRxBuf3[UART_RXBUF_SIZE];
static unsigned char g_ucRxBuf4[UART_RXBUF_SIZE];
static unsigned char g_ucRxBuf5[UART_RXBUF_SIZE];
static unsigned char g_ucRxBuf6[UART_RXBUF_SIZE];
static unsigned char g_ucRxBuf7[UART_RXBUF_SIZE];
//static unsigned char k=0;
unsigned char uartTmpBuff[UART_RXBUF_SIZE+4+4];
void
UART1IntHandler(void) //此中斷是做收資料與傳資料
{
unsigned long ulStatus;
char header[]="###B"; //辨識符號
char tail[]="B%%%";
//get interrupt status
ulStatus = ROM_UARTIntStatus(UART1_BASE, true);
//clear the asserted interrupts
ROM_UARTIntClear(UART1_BASE, ulStatus);
//FIFO data transfer
if(ulStatus == UART_INT_RX)//接收中斷標幟
{
while(ROM_UARTCharsAvail(UART1_BASE)) //loop while there are chars
{
g_ucRxBuf1[g_ulRxBuf1Count++] = ROM_UARTCharGetNonBlocking(UART1_BASE);
if(g_ulRxBuf1Count >= UART_RXBUF_SIZE)
{
g_ulRxBuf1Count = 0;
/*ROM_uDMAChannelTransferSet(UDMA_CHANNEL_UART0TX | UDMA_PRI_SELECT,
UDMA_MODE_BASIC, header,
(void *)(UART0_BASE + UART_O_DR),
3);
ROM_uDMAChannelEnable(UDMA_CHANNEL_UART0TX);*/
memcpy(uartTmpBuff,header,sizeof(header));
memcpy(uartTmpBuff+sizeof(header)-1,g_ucRxBuf1,sizeof(g_ucRxBuf1));
memcpy(uartTmpBuff+sizeof(header)+sizeof(g_ucRxBuf1)-1,tail,sizeof(tail));
//通道傳輸設置
ROM_uDMAChannelTransferSet(UDMA_CHANNEL_UART0TX | UDMA_PRI_SELECT,
UDMA_MODE_BASIC, uartTmpBuff,
(void *)(UART0_BASE + UART_O_DR),
sizeof(uartTmpBuff));
ROM_uDMAChannelEnable(UDMA_CHANNEL_UART0TX);
}
}
}
}
void
UART2IntHandler(void) //此中斷是做收資料與傳資料
{
unsigned long ulStatus;
char header[]="###C";
char tail[]="C%%%";
//get interrupt status
ulStatus = ROM_UARTIntStatus(UART2_BASE, true);
//clear the asserted interrupts
ROM_UARTIntClear(UART2_BASE, ulStatus);
//FIFO data transfer
if(ulStatus == UART_INT_RX)
{
while(ROM_UARTCharsAvail(UART2_BASE)) //loop while there are chars
{
g_ucRxBuf2[g_ulRxBuf2Count++]= ROM_UARTCharGetNonBlocking(UART2_BASE);
if(g_ulRxBuf2Count >= UART_RXBUF_SIZE)
{
g_ulRxBuf2Count = 0;
memcpy(uartTmpBuff,header,sizeof(header));
memcpy(uartTmpBuff+sizeof(header)-1,g_ucRxBuf2,sizeof(g_ucRxBuf2));
memcpy(uartTmpBuff+sizeof(header)+sizeof(g_ucRxBuf2)-1,tail,sizeof(tail));
ROM_uDMAChannelTransferSet(UDMA_CHANNEL_UART0TX | UDMA_PRI_SELECT,
UDMA_MODE_BASIC, uartTmpBuff,
(void *)(UART0_BASE + UART_O_DR),
sizeof(uartTmpBuff));
ROM_uDMAChannelEnable(UDMA_CHANNEL_UART0TX);
}
}
}
}
void
InitUART0(void)
{
// Enable the UART peripheral, and configure it to operate even if the CPU
// is in sleep.
ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOA);
ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_UART0);
ROM_SysCtlPeripheralSleepEnable(SYSCTL_PERIPH_UART0);
ROM_GPIOPinConfigure(GPIO_PA0_U0RX);
ROM_GPIOPinConfigure(GPIO_PA1_U0TX);
ROM_GPIOPinTypeUART(GPIO_PORTA_BASE, GPIO_PIN_0 | GPIO_PIN_1);
// Configure the UART communication parameters.
ROM_UARTConfigSetExpClk(UART0_BASE, ROM_SysCtlClockGet(), 115200,
UART_CONFIG_WLEN_8 | UART_CONFIG_STOP_ONE |
UART_CONFIG_PAR_NONE);
// Set both the TX and RX trigger thresholds to 4. This will be used by
// the uDMA controller to signal when more data should be transferred. The
// uDMA TX and RX channels will be configured so that it can transfer 4
// bytes in a burst when the UART is ready to transfer more data.
ROM_UARTFIFOLevelSet(UART0_BASE, UART_FIFO_TX4_8, UART_FIFO_RX4_8);
// Enable the UART for operation, and enable the uDMA interface for RX
// channels.
ROM_UARTEnable(UART0_BASE);
ROM_UARTDMAEnable(UART0_BASE, UART_DMA_TX);
// Put the attributes in a known state for the uDMA UART0TX channel. These
// should already be disabled by default.
// uDMA通道屬性清除
ROM_uDMAChannelAttributeDisable(UDMA_CHANNEL_UART0TX, //選擇UART0 TX的DMA通道
UDMA_ATTR_ALTSELECT | //設置為主控制結構
UDMA_ATTR_HIGH_PRIORITY | //普通優先級
UDMA_ATTR_REQMASK); //響應外設請求
// Set the USEBURST attribute for the uDMA UART TX channel. This will
// force the controller to always use a burst when transferring data from
// the TX buffer to the UART. This is somewhat more effecient bus usage
// than the default which allows single or burst transfers.
//uDMA通道屬性始能
ROM_uDMAChannelAttributeEnable(UDMA_CHANNEL_UART0TX, UDMA_ATTR_USEBURST); //選擇UART0 TX的DMA通道;設置觸發方式只有脈衝觸發有效
// Configure the control parameters for the UART TX. The uDMA UART TX
// channel is used to transfer a block of data from a buffer to the UART.
// The data size is 8 bits. The source address increment is 8-bit bytes
// since the data is coming from a buffer. The destination increment is
// none since the data is to be written to the UART data register. The
// arbitration size is set to 4, which matches the UART TX FIFO trigger
// threshold.
//uDMA通道控制設置
ROM_uDMAChannelControlSet(UDMA_CHANNEL_UART0TX | UDMA_PRI_SELECT,
UDMA_SIZE_8 | UDMA_SRC_INC_8 | UDMA_DST_INC_NONE |
UDMA_ARB_4);
}
void
InitUARTs(void)
{
// Enable the UART1 peripheral, and configure it to operate even if the CPU is in sleep.
ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOC);
ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_UART1);
ROM_SysCtlPeripheralSleepEnable(SYSCTL_PERIPH_UART1);
ROM_GPIOPinConfigure(GPIO_PC4_U1RX);
ROM_GPIOPinConfigure(GPIO_PC5_U1TX);
ROM_GPIOPinTypeUART(GPIO_PORTC_BASE, GPIO_PIN_4 | GPIO_PIN_5);
ROM_UARTConfigSetExpClk(UART1_BASE, ROM_SysCtlClockGet(), 9600, UART_CONFIG_WLEN_8 | UART_CONFIG_STOP_ONE | UART_CONFIG_PAR_NONE);
ROM_UARTFIFOLevelSet(UART1_BASE, UART_FIFO_TX2_8, UART_FIFO_RX2_8);
ROM_UARTEnable(UART1_BASE);
ROM_IntEnable(INT_UART1);
ROM_UARTIntEnable(UART1_BASE, UART_INT_RX | UART_INT_RT);
}
int
main(void)
{
static unsigned long ulPrevSeconds;
volatile unsigned long ulLoop;
// Enable lazy stacking for interrupt handlers.
ROM_FPULazyStackingEnable();
//clock 80M
SysCtlClockSet(SYSCTL_SYSDIV_2_5 | SYSCTL_USE_PLL | SYSCTL_OSC_MAIN | SYSCTL_XTAL_16MHZ);
ROM_SysCtlPeripheralClockGating(true);
// Enable the GPIO port that is used for the on-board LED.
ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_GPIOF);
ROM_GPIOPinTypeGPIOOutput(GPIO_PORTF_BASE, GPIO_PIN_1);
ROM_GPIOPinTypeGPIOOutput(GPIO_PORTF_BASE, GPIO_PIN_2);
// Configure SysTick to occur 100 times per second, to use as a time
// reference. Enable SysTick to generate interrupts.
ROM_SysTickPeriodSet(ROM_SysCtlClockGet() / SYSTICKS_PER_SECOND);
ROM_SysTickIntEnable();
ROM_SysTickEnable();
// Initialize the CPU usage measurement routine.
//CPUUsageInit(ROM_SysCtlClockGet(), SYSTICKS_PER_SECOND, 2);
// Enable the uDMA controller at the system level. Enable it to continue
// to run while the processor is in sleep.
ROM_SysCtlPeripheralEnable(SYSCTL_PERIPH_UDMA);
ROM_SysCtlPeripheralSleepEnable(SYSCTL_PERIPH_UDMA);
// Enable the uDMA controller error interrupt. This interrupt will occur
// if there is a bus error during a transfer.
ROM_IntEnable(INT_UDMAERR);
// Enable the uDMA controller.
ROM_uDMAEnable();
// Point at the control table to use for channel control structures.
ROM_uDMAControlBaseSet(ucControlTable);
// Initialize the uDMA memory to memory transfers.
//InitSWTransfer();
// Initialize the uDMA UART transfers.
ROM_IntMasterEnable();
InitUART0();
InitUARTs();
UARTStdioInit(0);
UARTprintf("\nStart\n");
// Remember the current SysTick seconds count.
ulPrevSeconds = g_ulSeconds;
GPIOPinWrite(GPIO_PORTF_BASE, GPIO_PIN_1, 0);
// Loop until the button is pressed. The processor is put to sleep
// in this loop so that CPU utilization can be measured.
while(1)
{
// Check to see if one second has elapsed. If so, the make some updates.
if(g_ulSeconds != ulPrevSeconds)
{
// Turn on the LED as a heartbeat
GPIOPinWrite(GPIO_PORTF_BASE, GPIO_PIN_2, GPIO_PIN_2);
SysCtlDelay(SysCtlClockGet() / 3 /5);
// Turn off the LED.
GPIOPinWrite(GPIO_PORTF_BASE, GPIO_PIN_2, 0);
SysCtlDelay(SysCtlClockGet() / 3 /5);
}
// Put the processor to sleep if there is nothing to do. This allows
// the CPU usage routine to measure the number of free CPU cycles.
// If the processor is sleeping a lot, it can be hard to connect to
// the target with the debugger.
ROM_SysCtlSleep();
// See if we have run long enough and exit the loop if so.
if(g_ulSeconds >= 10)
{
break;
}
}
// Indicate on the display that the example is stopped.
UARTprintf("\nStopped\n");
// Loop forever with the CPU not sleeping, so the debugger can connect.
while(1)
{
GPIOPinWrite(GPIO_PORTF_BASE, GPIO_PIN_1, GPIO_PIN_1);
GPIOPinWrite(GPIO_PORTF_BASE, GPIO_PIN_2, GPIO_PIN_2);
SysCtlDelay(SysCtlClockGet() / 3 /5);
GPIOPinWrite(GPIO_PORTF_BASE, GPIO_PIN_1, 0);
GPIOPinWrite(GPIO_PORTF_BASE, GPIO_PIN_2, 0);
SysCtlDelay(SysCtlClockGet() / 3 /5);
}
}
跟電腦人機連接的UART0鮑率是設定115200
其他五個UART的鮑率是19200
五個儀器會同時傳資料進晶片
晶片再傳給人機
我用BCB5寫人機介面
但是如果送進去晶片的資料量大一點
人機介面收到所解出來的資料就會錯很多
除錯除了快一個月了
無法確定是晶片的問題還是BCB5的問題
請問有高手可以指教嗎???
晶片這樣寫如果五組資料同時傳會不會造成資料錯亂呢?
BCB5收資料的部分我是用到六個timer去寫
一個timer專門收集資料
另外五個解五個儀器的資料
大致上是這樣
感激不盡 ><
|
|