图2中各个MOS管具有相同的长宽比。晶体管Q1与Q2发射极面积相同、Q3与Q4发射极面积相同、Q1与Q3的发射极面积比为1:n。Rs和Rt为修调电阻。放大器AMP1和AMP2处于深度负反馈。AMP1使得a和b两点的电压相等,而AMP2使得电压VR2等于Vbe3。通过M1、Q1、Q2支路和M2、Q3、Q4支路的电流相等设为I1。通过M6、R2支路的电流设为I2。可得到如下的表达式: 式中:I1具有正的温度系数,I2具有负的温度系数。I2和I2分别镜像到M3和M7求和后得到不随温度变化的基准电流。此电流通过R3,R4以及修调电阻Rs,Rt产生基准电压Vref。由于IC工艺的随机性,薄膜电阻会有(10%的变化,所以本设计用外部修调电路对输出基准电压进行精确控制,通过激光修调或数字电路控制修调电阻的个数可以对输出电压进行微调。作为一般结论考虑串联电阻Rs个数为x,并联电阻Rt的个数为y,得到: 通过式(6)可知,调节R2/R1的值,使Vref的温度系数近似为零。通过增大串联电阻Rs个数x来增大Vref,而增加并联电阻Rt的个数y达到减小Vref的目的。 AMP1的反向输入端串联2个(而不是一个)正向二极管接地起到了减少噪声的作用,亦可以抑制放大器的失调电压对Vref的影响。为了进一步减小运放失调对参考电压的影响,可以考虑较大的Q1、Q3发射结面积比值。此外,由于引入了修调电路,输出电压Vref可以稳定在0.5 V。
|