1 概述
Σ-Δ调制是目前国际上的A/D转换器设计中很受欢迎的一种技术,与传统的Nyquist频率采样的A/D转换器工作原理有所不同,采用的是过采样和低位量化结合的方法。其中,过采样技术在模/数混合电路中的应用,能够避免传统A/D或D/A转换方法实现中遇到的诸多困难,尤其是在对低频信号要求高分辨率的应用领域,传统转换方法需要较高精度的模拟结构(模拟电阻、电容等),从而使整个A/D转换器的成本很高。Σ-ΔADC能够避免使用高精度模拟电路,将噪声推向高频,具有分辨率高,量化结构简单等优点。由于电磁环境日益恶化,对接收机的动态范围要求越来越高,跳频、扩频等宽带信号的应用又要求使用宽带测量设备,这些都对ADC的分辨率和速度提出了更高的要求。
调制器(Modulator)属于Σ-ΔADC电路中的模拟电路部分,它的结构选择和电路参数设计都极大地影响着整个ADC的信噪比(SNR)等性能指标。在Σ-Δ调制器中,使用了过采样、噪声成形等关键技术。这些技术还使它另外具有一系列固有的优点,如易于与数字信号处理系统单片集成,无须采样保持电路,对输入端抗混迭滤波器要求很低等。下
面先讨论过采样与MASH噪声成形的主要单元分析,最后针对DAC失真误差,设计并仿真了一种数字误差校正技术。
2 基本原理与技术
2.1 Σ-ΔADC基本原理及调制器的组成
Σ-ΔADC由两部分组成:调制器和数字抽取滤波器。其中调制器的工作原理是采用远远大于Nyquist频率的时钟对输入模拟信号进行”过采样”,采样频率与Nyquist频率之比定义为过采样率M,是调制器的重要结构参数之一。由于采样频率很高,则无需传统的PCMADC中的保持电路。采样后的信号与前一时刻的采样信号相比较,对其差值做出低位量化,输出低位码流,并根据量化器的输出决定返回+Δ或-Δ反馈信号。调制器的基本结构如图1所示,主要由采样环节、积分器、量化器以及D/A反馈组成,其中fs表示采样时钟频率,K1,K2分别表示输入信号和反馈信号的增益系数。
图1 Σ-Δ调制器基本结构
|