第三十章 SPI 实验
1.硬件平台:正点原子探索者STM32F407开发板2.软件平台:MDK5.13.固件库版本:V1.4.0
实验25 SPI实验.zip
(526.69 KB)
本章我们将向大家介绍STM32F4的SPI功能。在本章中,我们将使用STM32F4自带的SPI来实现对外部FLASH(W25Q128)的读写,并将结果显示在TFTLCD模块上。本章分为如下几个部分: 30.1 SPI 简介 30.2 硬件设计 30.3 软件设计 30.4 下载验证 30.1 SPI 简介SPI 是英语Serial Peripheral interface的缩写,顾名思义就是串行外围设备接口。是Motorola首先在其MC68HCXX系列处理器上定义的。SPI接口主要应用在 EEPROM,FLASH,实时时钟,AD转换器,还有数字信号处理器和数字信号解码器之间。SPI,是一种高速的,全双工,同步的通信总线,并且在芯片的管脚上只占用四根线,节约了芯片的管脚,同时为PCB的布局上节省空间,提供方便,正是出于这种简单易用的特性,现在越来越多的芯片集成了这种通信协议,STM32F4也有SPI接口。下面我们看看SPI的内部简明图(图30.1.1):
图30.1.1 SPI内部结构简明图
SPI接口一般使用4条线通信: MISO 主设备数据输入,从设备数据输出。 MOSI 主设备数据输出,从设备数据输入。 SCLK时钟信号,由主设备产生。 CS从设备片选信号,由主设备控制。 从图中可以看出,主机和从机都有一个串行移位寄存器,主机通过向它的SPI串行寄存器写入一个字节来发起一次传输。寄存器通过MOSI信号线将字节传送给从机,从机也将自己的移位寄存器中的内容通过MISO信号线返回给主机。这样,两个移位寄存器中的内容就被交换。外设的写操作和读操作是同步完成的。如果只进行写操作,主机只需忽略接收到的字节;反之,若主机要读取从机的一个字节,就必须发送一个空字节来引发从机的传输。 SPI主要特点有:可以同时发出和接收串行数据;可以当作主机或从机工作;提供频率可编程时钟;发送结束中断标志;写冲突保护;总线竞争保护等。 SPI总线四种工作方式 SPI 模块为了和外设进行数据交换,根据外设工作要求,其输出串行同步时钟极性和相位可以进行配置,时钟极性(CPOL)对传输协议没有重大的影响。如果 CPOL=0,串行同步时钟的空闲状态为低电平;如果CPOL=1,串行同步时钟的空闲状态为高电平。时钟相位(CPHA)能够配置用于选择两种不同的传输协议之一进行数据传输。如果CPHA=0,在串行同步时钟的第一个跳变沿(上升或下降)数据被采样;如果CPHA=1,在串行同步时钟的第二个跳变沿(上升或下降)数据被采样。SPI主模块和与之通信的外设备时钟相位和极性应该一致。 不同时钟相位下的总线数据传输时序如图30.1.2所示: 图30.1.2 不同时钟相位下的总线传输时序(CPHA=0/1) STM32F4的SPI功能很强大,SPI时钟最高可以到37.5Mhz,支持DMA,可以配置为SPI协议或者I2S协议(支持全双工I2S)。 本章,我们将使用STM32F4的SPI来读取外部SPI FLASH芯片(W25Q128),实现类似上节的功能。这里对SPI我们只简单介绍一下SPI的使用,STM32F4的SPI详细介绍请参考《STM32F4xx中文参考手册》第721页,27节。然后我们再介绍下SPI FLASH芯片。 这节,我们使用STM32F4的SPI1的主模式,下面就来看看SPI1部分的设置步骤吧。SPI相关的库函数和定义分布在文件stm32f4xx_spi.c以及头文件stm32f4xx_spi.h中。STM32的主模式配置步骤如下: 1)配置相关引脚的复用功能,使能SPI1时钟。 我们要用SPI1,第一步就要使能SPI1的时钟,SPI1的时钟通过APB2ENR的第12位来设置。其次要设置SPI1的相关引脚为复用(AF5)输出,这样才会连接到SPI1上。这里我们使用的是PB3、4、5这3个(SCK.、MISO、MOSI,CS使用软件管理方式),所以设置这三个为复用IO,复用功能为AF5。 使能SPI1时钟的方法为: RCC_APB2PeriphClockCmd(RCC_APB2Periph_SPI1, ENABLE);//使能SPI1时钟 复用PB3,PB4,PB5为SPI1引脚的方法为: GPIO_PinAFConfig(GPIOB,GPIO_PinSource3,GPIO_AF_SPI1); //PB3复用为 SPI1 GPIO_PinAFConfig(GPIOB,GPIO_PinSource4,GPIO_AF_SPI1); //PB4复用为 SPI1 GPIO_PinAFConfig(GPIOB,GPIO_PinSource5,GPIO_AF_SPI1); //PB5复用为 SPI1 同时我们要设置相应的引脚模式为复用功能模式: GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF;//复用功能 2)初始化SPI1,设置SPI1工作模式等。 这一步全部是通过SPI1_CR1来设置,我们设置SPI1为主机模式,设置数据格式为8位,然后通过CPOL和CPHA位来设置SCK时钟极性及采样方式。并设置SPI1的时钟频率(最大37.5Mhz),以及数据的格式(MSB在前还是LSB在前)。在库函数中初始化SPI的函数为: void SPI_Init(SPI_TypeDef* SPIx, SPI_InitTypeDef* SPI_InitStruct); 跟其他外设初始化一样,第一个参数是SPI标号,这里我们是使用的SPI1。下面我们来看看第二个参数结构体类型SPI_InitTypeDef的定义: typedef struct { uint16_t SPI_Direction; uint16_t SPI_Mode; uint16_t SPI_DataSize; uint16_t SPI_CPOL; uint16_t SPI_CPHA; uint16_t SPI_NSS; uint16_t SPI_BaudRatePrescaler; uint16_t SPI_FirstBit; uint16_t SPI_CRCPolynomial; }SPI_InitTypeDef; 结构体成员变量比较多,接下来我们简单讲解一下: 第一个参数SPI_Direction是用来设置SPI的通信方式,可以选择为半双工,全双工,以及串行发和串行收方式,这里我们选择全双工模式SPI_Direction_2Lines_FullDuplex。 第二个参数SPI_Mode用来设置SPI的主从模式,这里我们设置为主机模式SPI_Mode_Master,当然有需要你也可以选择为从机模式SPI_Mode_Slave。 第三个参数SPI_DataSiz为8位还是16位帧格式选择项,这里我们是8位传输,选择SPI_DataSize_8b。 第四个参数SPI_CPOL用来设置时钟极性,我们设置串行同步时钟的空闲状态为高电平所以我们选择SPI_CPOL_High。 第五个参数SPI_CPHA用来设置时钟相位,也就是选择在串行同步时钟的第几个跳变沿(上升或下降)数据被采样,可以为第一个或者第二个条边沿采集,这里我们选择第二个跳变沿,所以选择SPI_CPHA_2Edge 第六个参数SPI_NSS设置NSS信号由硬件(NSS管脚)还是软件控制,这里我们通过软件控制NSS关键,而不是硬件自动控制,所以选择SPI_NSS_Soft。 第七个参数SPI_BaudRatePrescaler很关键,就是设置SPI波特率预分频值也就是决定SPI的时钟的参数,从2分频到256分频8个可选值,初始化的时候我们选择256分频值SPI_BaudRatePrescaler_256, 传输速度为84M/256=328.125KHz。 第八个参数SPI_FirstBit设置数据传输顺序是MSB位在前还是LSB位在前,,这里我们选择SPI_FirstBit_MSB高位在前。 第九个参数SPI_CRCPolynomial是用来设置CRC校验多项式,提高通信可靠性,大于1即可。 设置好上面9个参数,我们就可以初始化SPI外设了。初始化的范例格式为: SPI_InitTypeDef SPI_InitStructure; SPI_InitStructure.SPI_Direction = SPI_Direction_2Lines_FullDuplex; //双线双向全双工 SPI_InitStructure.SPI_Mode = SPI_Mode_Master; //主SPI SPI_InitStructure.SPI_DataSize = SPI_DataSize_8b; // SPI发送接收8位帧结构 SPI_InitStructure.SPI_CPOL = SPI_CPOL_High;//串行同步时钟的空闲状态为高电平 SPI_InitStructure.SPI_CPHA = SPI_CPHA_2Edge;//第二个跳变沿数据被采样 SPI_InitStructure.SPI_NSS = SPI_NSS_Soft; //NSS信号由软件控制 SPI_InitStructure.SPI_BaudRatePrescaler = SPI_BaudRatePrescaler_256; //预分频256 SPI_InitStructure.SPI_FirstBit = SPI_FirstBit_MSB; //数据传输从MSB位开始 SPI_InitStructure.SPI_CRCPolynomial = 7; //CRC值计算的多项式 SPI_Init(SPI2, &SPI_InitStructure); //根据指定的参数初始化外设SPIx寄存器 3)使能SPI1。 这一步通过SPI1_CR1的bit6来设置,以启动SPI1,在启动之后,我们就可以开始SPI通讯了。库函数使能SPI1的方法为: SPI_Cmd(SPI1, ENABLE); //使能SPI1外设 4)SPI传输数据 通信接口当然需要有发送数据和接受数据的函数,固件库提供的发送数据函数原型为: void SPI_I2S_SendData(SPI_TypeDef* SPIx, uint16_t Data); 这个函数很好理解,往SPIx数据寄存器写入数据 Data,从而实现发送。 固件库提供的接受数据函数原型为: uint16_t SPI_I2S_ReceiveData(SPI_TypeDef* SPIx) ; 这个函数也不难理解,从SPIx数据寄存器读出接受到的数据。 5)查看SPI传输状态 在SPI传输过程中,我们经常要判断数据是否传输完成,发送区是否为空等等状态,这是通过函数SPI_I2S_GetFlagStatus实现的,这个函数很简单就不详细讲解,判断发送是否完成的方法是: SPI_I2S_GetFlagStatus(SPI1, SPI_I2S_FLAG_RXNE); SPI1的使用就介绍到这里,接下来介绍一下W25Q128。W25Q128是华邦公司推出的大容量SPI FLASH产品,W25Q128的容量为128Mb,该系列还有W25Q80/16/32/64等。ALIENTEK所选择的W25Q128容量为128Mb,也就是16M字节。 W25Q128将16M的容量分为256个块(Block),每个块大小为64K字节,每个块又分为16个扇区(Sector),每个扇区4K个字节。W25Q128的最小擦除单位为一个扇区,也就是每次必须擦除4K个字节。这样我们需要给W25Q128开辟一个至少4K的缓存区,这样对SRAM要求比较高,要求芯片必须有4K以上SRAM才能很好的操作。 W25Q128的擦写周期多达10W次,具有20年的数据保存期限,支持电压为2.7~3.6V,W25Q128支持标准的SPI,还支持双输出/四输出的SPI,最大SPI时钟可以到80Mhz(双输出时相当于160Mhz,四输出时相当于320M),更多的W25Q128的介绍,请参考W25Q128的DATASHEET。
|