关于傅立叶变换的讨论
1 变换的目的,意义,应用。
2 傅里叶级数与傅里叶变换的区别和联系
3 连续傅里叶变换,离散时间傅里叶变换,离散傅里叶变换,序列的傅里叶变换,各自的定义,区别,联系。
3 快速傅里叶变换的实质,常用的算法之间的区别和联系,各自的优势。
4 fft的应用#此前在首页部分显示#
讨论:
1、变换是时间变量函数变成相应变换域的某种变量函数,这样使运算简单,处理方便。变换域变换有FT(以频域特性为主要研究对象)、LT与ZT(注重研究极点及零点分析)、DTFT、DFT、FFT、DTWT等。
2、傅立叶变换是非周期信号作为周期信号的傅立叶级数(FST)一种极限。
傅立叶级数—周期信号,傅立叶变换—非周期信号
3、非周期连续—— FT ——连续非周期
连续周期—— FST ——非周期离散
非周期离散——DTFT ——连续周期
离散周期——DFT ——周期离散
离散傅里叶变换(DFT)与序列傅里叶变换(DTFT)都跟Z变换有关,DTFT是单位圆上的Z变换,DFT是Z变换在单位圆的均匀抽样。
4、快速傅里叶变换(FFT)的实质是“分而治之”,利用对称性、周期性和可约性将某些项合并,将DFT序列分解为短序列,降低运算次数,提高运算速度。
5、快速傅里叶变换的应用十分广泛,凡是可以利用傅里叶变换来进行分析、综合、变换的地方,都可以利用FFT算法及运用数字计算技术来加以实现。FFT在数字通信、语音分析、图像处理、匹配滤波等方面有广泛的应用。
******************************************************************************************************************************************************************************
时域上看不清,在频域上也许会简单,由于T与F的倒数关系,T上的采样会在F上无限,反之也是如此。
宏观与微观之间的关系吧。
-------------------------------------------------------------------------------------------------------------------------------
从滤波关点看,复立叶变换相当于等宽带的Q值不等的滤波器组对信号进行滤波,采用常数Q的滤波器组则是小波分析
-------------------------------------------------------------------------------------------------------------------------------
傅里叶变换(FT)是一种将信号从时域变换到频域的变换形式。它在声学、电信、电力系统、信号处理等领域有广泛的应用。我们希望能在计算机上实现信号的频谱分析或其它工作。计算机对信号的要求是:在时域和频域都应该是离散的,而且都应该是有限长的。而傅里叶变换(FT)仅能处理连续信号,DFT就是应这种需要而诞生的。它是傅里叶变换在离散域的表示形式。但是一般来说,DFT的运算量是非常大的。在1965年首次提出快速傅里叶变换算法FFT之前,其应用领域一直难以拓展,是FFT的提出使DFT的实现变得接近实时。DFT的应用领域也得以迅速拓展。除了一些速度要求非常高的场合之外,FFT算法基本上可以满足工业应用的要求。由于数字信号处理的其它运算都可以由DFT来实现,因此FFT算法是数字信号处理的重要基石。
------------------------------------------------------------------------------------------------------------------------------
对傅立叶变换的理解
傅立叶变化是对信号的正交分解,e^jwt经过现行时不变系统后输出信号的形式不变,这无论在理论上还是实践上都有很大的意义。在数字信号出现后,DFT的快速形式FFT实现了计算机处理信号,提高了它的实用价值。
傅立叶级数是傅立叶变换的特殊形式,其所处理的信号是周期的。如果取出周期信号的一个周期作为时域有限信号,对它的变换进行可以得到级数形式。在郑君里的《信号与系统》讲得很透彻。
离散傅立叶变换和序列的傅立叶变换是相同的,
连续傅立叶变换(FT)时域和频域都是连续的(周期信号的变换频域离散),离散时间傅立叶变换(DTFT)时域离散,频域连续且周期,离散傅里叶变换(DFT)是对铁矾土的抽样。
个人这么觉得
-------------------------------------------------------------------------------------------------------------------------------
傅立叶级数一般可以理解为:信号可展开成正交函数线性组合的无穷级数
傅里叶变换就是对模拟信号进行数字化傅里叶处理,以便信号在处理后运算更方便。
从物理方面来讨论
傅立叶变换是一个密度函数的概念,是一个连续谱,包含了从零到无限高, 频的所有频率分量, 各频率分量的频率不成谐波 关系
-------------------------------------------------------------------------------------------------------------------------------
还有一种说法,是我从别处看来的
1:(时域)周期信号的频谱是离散的;离散的时间信号即(时间)序列的频谱是周期的。2:傅里叶变换主要是针对连续时间信号,离散时间信号也可以应用;数字信号(离散时间信号)主要使用离散FT,因为便于数字运算。3:离散FT等效于FT在在频域采样,变换后在频域也是离散序列。这样更利于数字运算。4:有限长序列可以看成周期序列的一个周期,所以有限长序列与周期序列没有本质区别(实际上就是一样的)。这样不论在时域还是频域,都可以表示(有限长)。同时还可以FFT。
-------------------------------------------------------------------------------------------------------------------------------
从数学上看,离散傅立叶变换是一个特殊范德尔矩阵的变换,因为这种矩阵可以分解,才存在快速算法。
-------------------------------------------------------------------------------------------------------------------------------
|