STM32中上电缓慢导致复位不良问题剖析
问题:该问题由某客户提出,发生在 STM32F103VBT6 器件上。据其工程师讲述:其产品在老化测试中出现个 别样机通电后不工作的现象。对该样机重新通电,可以恢复正常。但在后续的测试中还会偶尔重现不 工作的现象,呈现很强的随机性。调研:检查其硬件设计,未发现其它异常,只有 VDD 和地之间的滤波电容为 470uF,略显偏大。 将该电容替换成 220uF 后,重新测试,未见前述现象重现。
结论:
过大的滤波电容导致上电缓慢,从而引发复位不良。
处理:
重新选取该元件的参数,以满足上电复位的要求。
建议:
为了进一步阐明该问题形成的原因,以下对上电过程做一个简单的分析。在通常的应用中,STM32 的 电源是由线性调压路提供的,一般的形式如图(一)所示:
在上电的瞬间,LDO 中的调整管由于高度的导通而工作在线性电阻区,于是该电路可以等效于图(二)所示电路:
同负载 R L 相比,LDO 的导通电阻 R 很小,所以可以乎略负载的影响。于是 VDD 的上电曲线为https://**vhgW3nlldumm25acbcrjA3zPdGFIN2KabzgN/TRjJBa41dccUVbe+2121JLLdUOOOCA9sYbbxQeyaOTdthhh7WFF1643XTTTe3LL79sjI+yovTxyhGe4FHwTjcS2Isvvri9+OKLxb+8Zc011yw+x0oLzhyA9H2r3e/IYgxf6vXXX1+3M/rYdddd25133lkJ9THHHNMuv/zy0gMdHXTQQaXT4Xh7+OGH21lnnVX2EToDGCBsBt566602wwwz1AZ8++23PeYwgqmddtqprNspY805BebUiSpw4Q1ddMJjjAkdMPhWo0iwvj/77LMyJjcYJ+yLL74o5USOu+66q5TqO94jOGOY45EF/Rh0dEKnRx55ZP2pB3pO9R577NGmm266MrDx0AnuyJ3v8I6OfnQXXe27777t1ltvLcex7bbbtnvvvbddddVVbZNNNml+ZoFPy4noD1fs+4033thOP/30OihgBxBTKdQmcIOzzjprAWImGwUYzBZbbFGtb3OY1FcnssCbjccH2r7RjMLQ1M+8b7KA8bc6s802W9tvv/0qzgefeXBHH3103VQiX3CCSx2PPOEHDn2H4KSTTip6PGDoPfvss23++edvF1544ZjJwE2GGIzv7KFxFR1jKq8LBv0tt9yynXHGGeWZhTNjSy+9dLv99tt7sPiOpx6OOfgcCs8H8WgDFgp1Wbzbbru1xRdfvDlNFnQ38NVXXy2lYNS6tNmg4QiPZzwbocVDFOQbr/mGO3ymdbKEsplmmqldc801/+AVz+pWW23VeF798A+3Cs94S3BYD/d7773XlllmmTr96ESWxx9/vC2wwALt0ksvHRcp8sOlBCd6eH/hhRfKC/oJJDSN55rvh91FF1201lnLqK2JTnkduEYq8MEtLVpjjTUqFxwwCInWJs0+++zN0zlPEEYhBnP22WfX03q8mNa64JgWAyMxN3jOpmBW9U6Cllj++eef9571Cc1wQjfwvnmkueaaq1ywdeEVzJtvvlnXX**eMiQYiw4Mzbalp6U4BVCFlpooXr846XCh/x07rnnbpdddtloUf8DLnrHJz345gC8VsMpN1pppZUqpOEF3VNOOaWdeeaZtc8bb7xxe/TRR2tcbulhk244Fh7HQfM9UkHz2muvrQjgb6IGMGOQhT7//PNtxhlnrDhuzJxxLcWLt3IRRDAYpcdTdAlbP1zJnDYVbMbhVQh2ySWXtEUWWaTNOeecbY455qhTZBMYipablRNZi1etdU79Rhtt1OMzdLQS4fvvv7/m0IksoQuGzCkZz7f5lPTThgeGw7B4QGGEh4qu6e+VV15p880335A5E3rWg2MEg6txuMOjvkdFfzXJePEgjLosSVt8O4R77bVXhTjGxyO6mDioeGNQF1xwQbv55pvrVhfckXNwG53RIwckdFaYw4xJj1OzzDJLE86MUVDmXn755VqQJI1A5gmNMDgFHsyr+lGgNgwEJxjjweFb8Z215lVr0s86sOEx9LVuTNNPP31z/c2GZI0Td8QRR5QCGZ315tCzaaGjH7rZPLDhqwunD6YLD87YYost1lZcccW6APhW4RaG3ZoZNlg40tpcHsQGDVVtOiNQ4IKT15EPeXqAe//996+kP7fx0NWSF73IQC77+v777xef5FDS1segf9DF7yOPPFIHl6GWZ4qi11tvvZpgucaiPIsIcOWVV/YYMGbTo3Qbg7hqrRKGtcbUGA54OBTjhMx648Z8Uw6PKSwwEidOfNf6C8G33367eLAGHfxw826kwhl6cIWedd5QnOTwH/7CQxSOvjl66MqHZ2vNRd7BMgSn3GTVVVftvSCDUx1YnpXBR14t2ozJe88555xTrX63SnhdMMAL4ZJodOS7njoY6HXXXVfeKPyjCZ4sarf4jhxgFK01wxXz1nji8MSy3Xbb/c8zQehNZuutty4lQZJY7Fp93HHH1d8KhzBkBBIrbXaUALnETzzWF38RjRFRIsNweoQn7jeCEBye0LDGNRaj3rZUrtwfdDmFQoiT60RFeAo499xzy5jgUmPwYOQGNjCyoWlcRU+xBk/mwlOXRzR8C+/WeLPxs4PnEkZnTWhusMEGbdlll61DYQwd8w7CvPPOW+EmsGgzjNCkh+EKmBiIgzHzzDO38847rw4Xr2Xe+lTfaOe7izfym+v2fQ9XAmeP55lnnnb44Ye33s8plHPyySdXbsI4EFcpzHuCdxKukPIgyvxaa61V8wQjjBjqZDFKG+c2ZdN5EGt5Fwkp92jTDz300FIg+ioBIjicNp0x2yjGy23zVvoUrwWvgLcx+JdjebhMPmeTjcuxeCd0sonxOuRiSKGfNjjwZ4wc4KJ8L8cnnnhi8QOHcfOqhz1ew6/v5hTz/nuRXIPHNx75yWAeTzE+84MrPsBa58C6uXqCEMbxi56DCIaOuuvh79bwBBe40RT0FX+l6SnJg/YAYqmY32yzzSpxtdGe273H8AxuChCEiQhPUTyM0+nqaePlVx7E/DhojZsFb0JBXLT4apzQbo7eO6I4DNoEQoFRM4emEh7ARAH6kcOYK+tyyy1Xr/huHBJOXi0vvniB2wEJLRthY7xWkwkMY3bSHQYGjWfVb1aqC4m3IoYLhqHjFw/4dHhcIO64446ewcAjDC255JJ1qXFA8G4d3PixdqQCBixd4ZNOXUrc5hg2jy0EBhc5RyrRKRh9/NPPSAXPwu/yyy9f+z+QU2axQlAPWBI6G+KFNKe/S4TgBOGqKRscRcLjRuHPFhDz/dBDD7VVVlmlhPfS6ineJpmjhGOPPbZgCW5MS5D00Y2hhAdz6IdGlGY8YzwRpfpZSB4hHGYOfTKgA49voZlx864MD7yQ7F1GQqwlI4PkWXhcBoUGpTooDhVc6ODVJvrZwgaHpkNGB/IbJ1oOGMOIrPjSH66SM9W+OcTw4ZPcSvQDF36GK6FBh9F99D/SGnZxyCGHND/FkLN+TrEAQgUDKRAraQPjmyA2QzihWG6VQjBNebxRhBXuNt9888qPVlhhhWrDtA2RMIONAOjgI/TCgzXGwIan7lwx2/mD+dAA34XL2tAIbT+xuC5T0vrrr19yHXXUURUuJO02SSrAAOR6ciFJvp+YrHPdD058qvQhDPqtK39HTU/mHGRt5MpavBofqVijRrbumsgXvPQ62hK804IHR/a99967IpHvXs40rcWD5ylJEu1G4jWXIiC0EbJ7yqYscG6JPJdws88++/TCACP0G5XwYC1YlSK7ShpMe6K/0VL33HPPCkdCujDNo/r5yLcqBDJ+p9ABkHTKv6zj0cA4YGSJMWiFTwYlHCYM0s1kyjjROiOHfNABEmb/L2NiPHmep1zInAC5gRuM5Ji3Eu4YkvApdPph0JyQIakXUqxjRJRrM7IRE62AofDhWyXPEkssUYYi/3FQVK/Ibl5CIKPnjdxg3SZd3YV0IY4sQqnDlEPR9QjG5E9uP+jJZ9Ak71Qs9CHXy0F0OMblmSCgHEYh/tt8CnICGYkbnBsgI4orl6h6p5LUSz6daMqGK5tJqfrBN1lKxiMDEYrxJ4ex0WTknVwQ8G/j9R0iOY9nDqFL3pQLiHXhX598vtXoLQaUcDdZck4kHd6I3uwhOezbuIzJQjXuTZ/ilBCgOH1Jp34Ua4PAJ0kFY95YNgEeY5NVJK9uQX57xAMe0Y/HpKwYvrmuwYBTIyeeYzxpg8u66Cl4zE3FQg7Rhl6y52M2JgqKQihCP2NaSjVmTuWthEH97ibFiLLeWowxqrSToWT0HApJNU+Dxxh6ZDDGoMK/1jq86+OXt/Ed/q0lk6oPRh98dISuualYIg/+c9jGbEwEj4Igoph8U6gxCkNAH1GtStGKVgWnWg9OX2Fok1VCOzzaYHzgIYYRXrWRNX1tjI/MChhVgTdrtHBbw/DIPJULOVQyKn8DBLVlYiI8qV0AAAAASUVORK5CYII=如图(三)所示:
该曲线的上升速率由时间常数τ=RC 决定。而一般情况下,对 STM32 的复位引脚 NRST 的处理如图(四)所示:
https://***I+zZenD4sN5sorTl2t/asNG3zvkV/o+NW5c21kq0bIytSXBo8DFgye71LBqRDx98I/8tNgvy4PSbP7oTo3yMLBZox791WKdy8tegEzGGJ3AxPtniY+AWOkOycLWnrt/kMiqTRTDMIYhhyqMUjkep7qdVFjtmjCWoMVFwhOQQjfOxGzr6Tbx+ho9PykV7flMUyVg4YwbAgQlgPpCxwYCfQQmgJhltE6mdzkygn+Ip6UAbPuuEjkkhg3HqsucsWPpQpxN95CRf3Z9x6GivF1ZwZdGow+EdLAO0AFwRcYoMz3wI6nBazGT1jEe4bbwsKqdYV5duYDguumLkYNHo5dt84iH8ZL4CL4DQMyeLH1++2iA4BVk42m1iLHTGyym4RlcPXril0Beo2FtoRgdK/KGdZzCZB210qNRm7vQnG2cO9HEG2uEDL4PXlznzTF7682y8BZk2dfoBHxo2jJ4lY5LBaqd3O3w40ZTg43zNjdcOggD40OEMnDasG+PML6eCX3NuI4MOfKGDTw5SMCSztQyHjXtoG+uk4QRDDvTgiV6sDfjCS3DTGZmti9DlA9iVebehNMdsg7z4tVkUqLIG0IDDBkYQjo6V2iVzBJ+fAnKOaEXXeAGrJDedsje2Z+3zTTawboLolSzgIpvArB9P9C0AOMVxznwiWsFtXPRCR+poCyx8CX1ED5lP+mf3HLqNJZ/C5tGkH2vGRg7PfA2aArINjHk1H3CiJ7MPPovf1he75eMFGYcZ+iev4EO+zFfmle61WVv8Bx3JeBGQHQBtGugYfkHJGPJGB5mnXt2o48ucCfjWeXQe/UQediwWiEWRhV0aY5MEXru5Qt9ByQndjZ1ALNvk9EtiCfn4ffpmi2xs1qxZZfMPP7xoOeSFVuaWLGDIjEf0s67TTg/mid3bUBhjPeBZu5s5m2prkNxshV+zOc+6gRM+dQdfN8hsgN6MgStzZw15NjeZj1r+N2jEhIEyBmuB9EkZrA5GHQPqCGpDJAsteOzMGLsJxgwDJ6iEnmQ8fOhGSM9wqNtwqIOT0ERHMi4GGl5Lx1z+E9p4w5cyJwD10MILOkp8mwDPxpOJccYo9UfhnuFQ4lWCN+3k0q9PWwwFXjjS71l/+FVGXmPTHnh1/EVvMVb0wcOHln4lXErjJO2RoYaJzDXNPBsXWYyRw0ON30bExyoWr00I4+aABBZ8shUOxgkCjA2IRUDPwVPzhq55Yyt4QZeuorPImnp4M468yeEdnDZw2uo6/rQp9esLzeDBR92Ol3ru9MEB3nPNB1z1WHWbtxo+spkvi57TDi/g6Nw4fKiDU0fPs6DnNASPceHbM4dT8xcccMr62Do8qcNjbvQFF7qhqYz82j3L5BI4+Qfz6wZEwBe8bfw5bIHLGLglz3jSDy+egz80wJKPbvAY/YKVlPgHZx7RB2vd0w1bogf4Iodx6Oa2Qx+62hJc1cMLPRgro4GWPqUcPeElz+AEHHZvQ+xE60ZMUHLYoGOB1poRLPkjAZgegx8N+OACS040QlM9PIGhH7LDbVzgIre6MeSkGxtCa9IzvdET/DUNY+GFT1JqS04dr2Sw3sUJONAJnJKeZTyABaM01ibQXKElG6sEiwa5yIhHbRMlcgqsxuCFnOwBregGTs/a0Zfxoz1yRgZ48BNewejDh3Fk05+x6vrNWQ454kRiBTxgjCWTEo9sT2ms9tBRJxPdZU611WnsnX8YUiYbGAZrpoMYUgzJlK7dGKU2/WEAU9ok+MEELrChqw4+Sk9dScDgzHht+tCe14SmZLxndIOH7GiELyVa2sHE4FLXBiZ8eU6bMhmN0FHSLWPBQ8amNEY7mIzRph99behEfvUYQfilL88MqcaBb+O0KdXTpm6MHBqew0/66U4bGDzKqYOPjvTj2ULMtbKTqBOEa1onL4uKI+BgBTQfNao72ThlkYNs4QMtOOX0RZ7wiT/wYJSp40cCL4OX6CiwSu1KGY3oEm3jyGdMTRcM/NoytqZtDLxKMBmrDN/K0A4+dXgyJrijEzTBao++jfFc86Mt/IOt6aSuLXTgVEdb9qwN3cClz/jwCEZSagsfoe3U5oRrnTtpe4Xh5GsT6NqSbRhrHFpScOPNc2h4Rls7WO3hmZ5lMPo4S88ymMisz/jIpz08a4dDPWNrWbWHpvGhjefU9RsbHJEhNG2qnKStAydxr65c13s9YF3i2+tYNxpuAgRhPzVVwkmv4UMZurGztIWHzIP26EJJrsimNB4ucHglR40rY7SlL/0ZUybvVV2Eljb4wATO+LrdnKANrp5DbcGjjyyZPzyP58e090vw6Q8vSvRkPKEBRl0g9ixrlzJWW+r4gwcv+lP3DE4f3J6jt8hAHnDajUNHzhibLzDKbAyCF/3QCn1lbxq79u/tiBCQSKkrEcEIRUCaUh94TAUOrH7wUaJn/XKENwYubfWEq9djwQSPPo5DKc9vioLhRosMUR7eOXcwZAmP9RiwMYg84wU8uPCslCVl5DIG/0pZyrPxElg54yJz5FbiNXMDTl3WZ6w+eLWp03lS2sAyVnX9NiV40E7XnkNDW2T0nJyxcGvDi1K76zUflLmW5sA4fx/jeD9n3u26c4XvalrwdwJy0kErOXKERmhrr3UUvSnRNx6sFB0ryZlxwRGcKY2HJ3W6CH549ctSrafQhje6hIO8gQsveAh94+hcyb7QqHEbC1a/59TBhJZSAiPBL0cGz3iu28CZe9k4sPDI4OJs1PEETpt6ePAcXcAha4vc9G1T57Tv1U4+dPUqykdkrv/z3j1zZmwSPpK1w1/rM3UwnsHgM7DaweNJv4xfdVk/2Dr3wukDJ5Ebn4HRJ+mv++CW8BJ4dME43ZPZ+vMO3ubYawWbAPicCK2F6Au8GzLfSumPnsJDDhSRh7z4kQObcdrYGl60RR9K46Pb4MZvYIIDnOc6122ek42VAhu8+mNL2tRtbvBLZ+qe0U+Axxs84afGlXGhVYiO84/xcAcP3aWuLevPM5yhARU4/CjpMboKn8bop1s5fIYn4+TMV3AmtqFtnKSEF3xKNOkmOfMLBu3wDL5Ob9CgU1JiTBmGlOlTph8MgZQ1PBjEI2j6e8cFf8YaF2Y9S/oiYOCCD2wUGTjl/CT8SqHluZeeOnqBjTy9JbjwoS8yZVz6U4auemCNCw/G6WMAEpgaF55reLBZDGXAq/OhHVzGBm9NFw3t4IIzfIR++jIuNNSl8KcemNCMrQU2uIMD31L0bJwMZ5K68fgIDXgDl359sY96vPbozLOU0rPxtezqUhZ3ZIAzPChDAy5ZW7K+tAc/PFJN23MvnsBpDy/BFfoZp0xbxnEIxsnhA11wWb+FkVfnTnvNFzyha3xwcEz6Ymuhiwc0U09pLoxVGuNVnnerTrvwGKcEnzrYJO3q4CR1CWx4Io8EBqw63gUJbbUOgruml7FgA58xSrBkk9TBhLbnjNcWGdKuT1tgMhZs+iKTUq5xh54yazH6CG/w5Dm4BBRJHc2MUQcraZfrsZ61RY6Mp9M8Bybj4daHb33j8V8IvvqPcWCMkYLXc/oyT6kr4ZaMDX/KtNc22ctjGTjOP2iDjX5CJ21K9GQpcMGvre6PL4tM8EnqaUupHR651q8xqWcsmNBGL/rJ2MAZGxmUaPWmvr/z7wVs9aaBpoGmgdejAc6KkxJAfUzqwzWBjHNqqWmgaWByNdCC/+Tqu1FrGpixGkjwdwrxxbmP8nJKm7FKaYI3DUyRBlrwnyLFN7JNAzNJA7mCdD0r+LsBUNoQtJP/TLKEJuuoaKAF/1GZicZH08A01oAAn3eUuQFw6vc+3kagpaaBpoHJ1UAL/pOr70ataWDGaiAnfaUPlQR9NwEtNQ00DUy+Blrwn3ydN4pNAzNSAwn+Pvhz+k9u1/4z0hya0FOsgRb8p3gCGvmmgZmmgRbsZ9qMN3lHUQMt+I/irDSemgaaBpoGmgaaBoaogRb8h6jchrppoGmgaaBpoGlgFDXQgv8ozkrjqWmgaaBpoGmgaWCIGmjBf4jKbaibBpoGmgaaBpoGRlEDLfiP4qw0npoGmgaaBpoGmgaGqIEW/Ieo3Ia6aaBpoGmgaaBpYBQ10IL/KM5K46lpoGmgaaBpoGlgiBpowX+Iym2omwaaBpoGmgaaBkZRAy34j+KsNJ6aBpoGmgaaBpoGhqiBFvyHqNyGummgaaBpoGmgaWAUNdCC/yjOSuOpaaBpoGmgaaBpYIgaaMF/iMptqJsGmgaaBpoGmgZGUQMt+I/irDSemgYGrAH/o57/Pjf/s57/Uc9/qdv+k50BK3oBRZf/afGVV14pNsE+mm0soJM5l2y34D+XimpgTQMLsgY48mwAbALi3LW1NLM1wDby3ytnU5iN4szWzPSWvgX/6T2/TbqmgaIBDp5D/8tf/lIcvaCf56aipgFB/89//vOYbXhuG8PpbRct+E/v+W3SNQ0UDXDugj2HnpPen/70p3L131Q0szXAHrwCYhvPPvtssY9sBGa2Zqa39C34T+/5bdI1DRQNcOxO/t7t/uxnPyuOnsO3IeD8W5q5GmAbbOGpp57qZs+eXeyENrS3NH010IL/9J3bJlnTwGs08PLLL3dnnnlmt9NOO3Wene5sCFrwf42aZlzF/D/zzDPdDjvs0F144YVjt0PNLqa3KbTgP73nt0nXNFA04BT3xz/+sfvSl77U/fSnP+1+//vfl8DvdUBLM1sDbOPhhx/u1lxzze6uu+4qymAXbWM4ve2iBf/pPb9NuqaBogGnuOeee67bfvvtuyeeeKJc93vn34J/MxA24FXQD3/4w85P/bwKEvjbtf/0to0W/Kf3/DbpmgaKBgT/X/7yl90uu+xSgr96clPRzNYAO9hvv/260047bewnfzaGLfhPb7towX96z2+TrmmgaMDp7pprrulOP/308mGXevvgrxkHDTjps4sLLrhg7FWQDUG7FZre9tGC//Se3yZd00DRAGfuNOddvxOdwM+5t6/9m4GwA9f92QyyCW2u/luavhpowX/6zm2TrGlgTAOCv6DvK39OXl323NLM1kDsIJtCdR+HtuA/ve2iBf/pPb/TVjrO6fHHH+8effTRseznShxXb0qbMs81TNrTl3oNM9XP4S2nNLIm+5DvhRdeKHrw1bb80EMPlZx6ygceeKC0K++7777uwQcfLPD6H3nkkbFxv/3tb8tGYarl7ke/niOn1t/97ndjdsAm8sdqojd4PI/3HrvGFbjQnagvMFNVRjYy0UHsgewymzCncuZfOZ5t/OY3v+nYBHu45557Csz9999fynpsnunYLVKtn/p5qnTS6M69Blrwn3tdNchJ1kActTKOTvDztfoxxxzTrbHGGt1CCy3ULb/88t0HP/jB7hvf+Ea5xgafMcqcYJxyZXV4cgJOu+vOwGub6oTHONTI8NJLL3U33HBD95Of/KQ77rjjuh//+MfdySef3J177rndV77ylW6zzTYredNNN+022WST7gtf+EK3+eabj7Vp780Z88UvfrHbeOONu1mzZpUPA6+66qqpVkFf+nTjDxY99thj3fe///3u4x//eLfwwgt3yy23XPfhD3+4+973vjc2z+Y0V9nGRKdKePTJkrbaLmIncASPuQAX+PIwyf+g7+80pLzpppvG7OGEE07oTjrppPIO39z6eac5N79sIfOvr7ctfXMqjfv5z39edBU+sq4mWRWN3HxqoAX/+VRcGzY5GogzjvN12hD8ODfBb5lllilO7qKLLuruvffe4sQ5b44oYzgnzxy5rC8B33twOY5LEPAc5z45Uo5PBc/4iA7CU+RJP/6d/J5//vly+nvxxRe7P/zhD52NQm4FXPdrHy/XcHD4S2/a6GpUkyBOxksuuaQ79dRTS7BfaaWVunPOOaf8bM0JlX5iB+DpLTagjJ0oYx+e6bnXTtThCM7MS+ZksvWEbs13vYHBa2zERtlcJls/nt0KmGv1iWxjPHvR5mYh+mB/0d9U6WOy9T8d6LXgPx1mcZrKwKFwJkrJM4fPcXE4BxxwQPftb3+7OLo4ILAJ4LUjTxvHKAW3OrjApj2OtQBP0T94kcMvnhLMtIdHMpCffpIjR8roUb03wx9coQWnMaOa6MGrH5sbz1//+te7I488sshmI2S+BSdykFfynCAZPYGRU1fSBTvzbExwCKhgpejVcz22dE7CP2iGdvjDU+yADHW753qOjY8d1HBpm5sSLfoECwf9hK9JUEEj8To10IL/61RgGz48DXDqSbVT4Wy833TFy/mrx7FxSHF0Ss4pbXDEYXHiggQaaYvD5Pg91zTDx2SWkYscEn48p/ScEx45yWKMMvyrRw7leBlM8Aa3tlFO+IvMv/71r8urH3NKjshucyDRkTkFrz85+oIrH7jpU6eHBHvjtIWmEg2lBNazcjITXiMD2uEjfOFbG5jIhe/wnjHzU5IzekaPrtBoacHRQAv+C85czThOa2fC0aTOqXnn77TH6XDccUDg9HsFcPvtt5cAb5x2HwjecsstnQ+ZfNgk+LvC1Cd7f2ycD+FcG4feVCqeYw7/eCSnHN4S8BKgwEcezxx/gkA/J1/LB3fo1O2j9kwufArqP/rRj7o99tijXF+TlW5q2c23D9oC74M2Hwi69r711lvLn7T1sRtd2gjqu+OOO4od+PDRB3P+7O2NN95YbIoN2XRmDtAKzcnSU2iimzmzFrIZwEfmMf2pG+NZmfH9bGOidnjl4AELb0sLhgZa8F8w5mlGcsmZSHEwcUSctA/T9t57786HTnfeeWdxeum3GRAQ/NUyDj6ODuyGG25YxvhG4JBDDimbB07z5ptvLn/oRDC47LLLusMPP7wEgalUPKcaHXiunXftePOsJLuTsOD15JNPljFw6It++pW9MOqjmvBGJzZwn/70p8uVv/kV2KM3gZA+fBz5ta99rejCKyN/yY7NgPXnjn0sueuuuxaduVGysTz//PO7X/ziF+W7Es/+AM63vvWt7rDDDuuOPfbYsnlMoKNPNCdTX5ER7QR8z+FBqY5HOrL5YRM2MzZIUnQIbl5zxkbu0IpORtVuGl//TwMjEfwZL4PkqJWclh14DFm/j1LstnNVG+OPKDHe1F9vGWPGA/pSaMypDGyctY9j8E++nFKzeMhJJjKHjjY0Bp3wg75g56+9hQa9cgoSHsL3oOkPCh9drrPOOt1b3vKWbvfdd++efvrpwrdNAZnY0M4779xdfPHFRZa0+0jQ/2gXe/IlvEDvpO/keO211xab80HUjjvu2F1++eVjjhLv5iw2OShZggffcJubpMiC/5p2bF9bnpVOwQIb3bgVufTSS4uscGY82eFVwps+pXaJPXpOPfyMUmmO8eeDtVVXXbV75zvf2e2zzz5lw5Y+Jb2cccYZnY8B3eywdXoxxzYL2223XfmG5Mtf/nLnK3knfG1uC9jZ9ddfX26MwPs63ubQz9zoutZP/TwoPcFpjqxHciSZy9BTRs7YeWwivuWss84qv/ywJnwQGThldAVn2uGEI3TAeMaHPs8Zx47QsZmiWzDawMg1nvAcOVo5tRqY8uDPICyyK6+8svvkJz/Z/cM//ENxxE5iHBJDcjX7zW9+s/vIRz5SduWMNIYY9cEzSOOCK4tIKaOLn350skhj+Eq/qT3qqKO6v/mbv+lWWWWV7pRTTimbADjId91113VLL710+ZmWa+rgQG+QyWKF25fcvpJ3Bc6hOdGsttpqJdhx+uhm0Q6S/iBx0d1tt93WnXfeeUUO/GpTktMXzhy4oB47IRfn7coWjLlkU3vuuWd3xBFHlMAR+W3E/DwqwRPvwY/GoBOcCcLoyOpp0x+7iP0FjlzhzcbOvH7nO98pNkZGY60vDprcsiDoBBx5jdNuk2qthcag5RwkPnKFbxtZ/zGN6/roQ3AGQ0Y/WXTL4ybIGvNqh/yCop8JmufPf/7zRX5r4qtf/Wq31VZblQ0xHdIvnX30ox8t40JjkPL0w4UWOzD/ZMmcqkcHsQXzBl6u4by2sAGiHzjAk9Ocg7V5pkttbj60o8lubK7oUganhAdtGRzbcoviViR92sMLuJZGTwNTHvwZjsRwt9hii26xxRYrO8gYFiPSd8UVV5TrNsYXI2fESfVz2l5vGQNHz2KzKNKWBVeXMXJGj2/w5BNw/v7v/778JlufMZEBXqcOTlt73f96+a/HoyMY+jreaRd/biIEf5sPwS70s2jr8aP2TNf0S48cF57VySAQCOyCmTZ9AvrHPvax4szIzjn6Pbv/3tb/Y+5WIPNsY/HZz362BAr4JCWaqQ9SH+E79OPYtXtm8xwx2nHq4Sn2og+s2w6/v6YTcsoCnP/UB35zvu2225bNk7/n7jpYmwDp5sMVuQ0r2NjzIGUdFC6y0g8eZXqIrvBObm2CvXf1Nr3rrrtuOfmaX/px8+PGx2/WI7P1KkBakzYBcMqu+t2moJX5GpQsE+FBmyyxBfS1xQ61kxNMbCA6UdrMmVt2bsMTfP42hAOX4O71hg3Rvvvu23kdZqPgFYGSPZ144omlna7YFnzRd2iyUa9H6Iw9oZ3Uy3PaWzm1Gpjy4M8wGLDg52S8zTbbFEO2gBkY42JYTnmMS5tcG9cwVIhu6ISmBRbnq3+8jC9wEliy/eAHP+j+5V/+pVwpBic4MjpRWHQcjj7wWciDlAsvHLvFacGjwdG5qnPj4qSMPp4kso1yqh08viWOTbuT/NFHH10cPFm90rjwwguLjGDo3pWvP3gi+LkO5fTgMQ/e9/sZIbtLoo9h2Vx4Mif4R0tbHDu+Ilva8IWf3nnyWsN/zer2I2O8wuCQjdXu/TY5veu2+SOvzQF8HL7fzeNjWPJGp6+njM7Cpzo9C6YRTgAAIABJREFU4TnP+tys+QaC/ZPbdyI2gvThDwM5qXrvP3v27HLqze2b0/KSSy5ZbMDYjTbaqLwGgnMyU3xJNnPo44ecnska21SaY2WewXid4ZuH/DafXZtvvkDb1VdfXQ4oNjj8rM3ir371q+K3rB9rhA4PPfTQsb8jER7QwwM6ePzc5z5Xvr9Qr/nKGp1M3TVaE2tgJII/Q2KM/kKXXSjDYSyMh0ExVu8yOewYVQx8YvHmv9fiisF67l1sE2HmWC2KjPOX6LyyCO9pV7p69IdKsoiVuQ2ZiMa89tHhUkst1R188MGFVvjTvtZaa5V34WhHZv2jmvAYPukwstAvp+0kx8m7AeCwBDgO3gdb3uP7q3g+6nLa4Vydgjg8mwTzYbPG4dFH0jDtDW4y4F8y/7ERwdpGBr/eq9Y8gelNrl9zstXv/bRXG9aY7LSfmx+voMjrGwF6kJ1uvXJjw/ga5cQGMvd4xTMdalN36nWj4z0+WBuBgw46qJyABTpy2/x+97vfLdlp10aQn3HidSNEJ9pXXHHFslGHx/zE/oatH/KQCx/WKrp+qWLuvE4UuMmqHazSvHuOHbFl3y7Y8IBlU2zfaxCvPDyzA9f2/jKigxi9qNsEw2kN2SDDy47iKzyjB0YbvpZddtmyqaIb8BK6LY2WBqY8+DMKBmIBvve97y1OlzEx9ixip2Pv7Hqvk4wdllEFtxIvePIREMfpumy87NRgoYJN5ozf8Y53lKBLzixgeMnn1AUv+DgVfZ4HmTj0f/7nfy5XduhaqPjB76c+9aly44I3tPGiHNWEN5njIYP5SRvHxdmxGcFc8OPs7r777nLKcdIzzonGxtI4OhAwvVoyjh6ig+CtdaFtkAktcnCgeEPfu1cbEtmVtVsb76U9g+nlCw6JXPDoN8dnn312ycbZGDkBktH7W4GRzfrlBGdPR25N4IAPnlFNdEC+8Bl5oxfrxzW3wKYki3lmH0o/7aMTeicvW7FZ8BNPf0HSus1pG5x179ULetH1ZOgmc8nG8edmxqs7fNq0epUVOcgOPmPoh6x0hWf98HjFQS9uO7bccsuiE5tLm6Rddtll7O/7o+c7Gf7CBpRePMMpxV95Dn4b1De96U3llrZuT38Z2P4ZCQ1MefC3+AR110VObD46yUJmxAyYY3YaA5vFTXue0xZt1gszsHVbxgVeGcNUJgcOfXi0cwCuVS0QTrQ3O1VZEHFMxnpf9ta3vrUstuCBS5/rR4uOUw6vFldkAqc9ST2pbteWBZ/2wAYvp/7ud7+7XO9po2djOMa11167BH98a8NDyvzHL0qBlNPxzIFwpOiET05U0JqszOmhpeS8BTQZX9qVsv6UnpPBCISBVzceLjCeU+obVkbDPJh3diHouLFwU4EXc+X0zvbyQVXmNfaQOVCv59FJzFWuGzUbVk7cB3IyuzPPbt1sfLzLJbO2Gn/mGG72bRw7GC/jlwzGSAImvbleHob+Mt/WEvzqoZM286sdb+lTqmunf/VeeHVjYx/BE/ga1yCe8RL+6cuGjB7ZhTUp2H/mM58pwZde/bphvfXWKzD6zY0EXjaPkr4cYMyNDZ/gDzc7sAac/MnnhtUNiVdCrv7ZDNu0ibTmYxexEXS0oSHj6+/+7u8Kb/rQABv4wlD7ZyQ0MOXBn1EwRFfSrmM5vhhKDN87SNdT2cFqjxEyakldO+NOX0rtcowQjGclA1XKgQmdGgYudQbuuV+qceLNNwzeHXo2tqbH4WbDAGfNpzrY8IKe8fDjA6xnic70ZXzkMB4s2jYsPqa0kVKPvHbxrv3xmbbI7QNB3yM4afhJHWfjP89R32uvvcq7PacD4zieM888s/SDaXnudeBDKqdwQZ4uncBWX3314nA5Yhs3GwGn0cxtP/sbZHvsKfaAN7cDrs69Vhkvu6kQNI1hE4IIW/A6odnE+Dbh41S6scFjC57Nd67c6d0798UXX7y8IvRzQ5s47+zNR+bJere2JyOFZko8mnO3Vn/9139dXp9ok+M7J4OvRmPuNTDlwZ9huJL+13/91/KOljExmATKXD3l6i7GxsgZWoyuNjROJ8EUnGcZTMZ7FljRSV+CLSMGFx6CG5/es/kb4sre7EtYPBmPLmduZ+7r6tDTrt8OOVey+EigDo+mMLowRnvGaocjfBlPBnLbCGiXwAcvZ5KTvzbwxuHXtb+PwuCEwziZzgUiryVc59mk1XWbA3BwwclBcUwtz5sO2BXd0b3NmJ9iLrHEEiXo+0bBO2cnQv2Z97lf4vMPaV5l9hQbtR7ZgbkfL7tOz2aUbbgtYg/eoze7GN8uzL9fJLhWlz37hZB5j3/yLt4Not/pswn6dNsQH2CepKz9+Z/1uRsZ28j6V+cD+DU/a3ZLFT81dxgb1GRrYMqDP+PxMYqfm/mohHNjSAyHsxMgGX4MSanfOAHJtTmj43Bcy7slsCj233//8tWzqzKvFVxJC2ICt7/+5ibBlZfbhgMPPLC8W7XT1sbBJUCixfFZVBam1w8yPL3Z9Wm9GPDk50R5nQFHrnc5STt+V+jk1IeWnE2N0gYiDoDs4LIpAYvP8Oo6Em8+AkIbPH5k7wp9UMnR1DLBn6/9wQVXgkzqxgSfUtYGjn7QS11by3OvA/qTzav5dcPi5G9DoI0d2BSYC3ql+8lKmdPMd+ygH31w7Ch8KsnAPppNjG8TtW7pV06iM/r0itF/W+37FXbATuiUXdAvHMrJTniLTaDvdcWb3/zm4lPjO8LvZPPW6E2sgSkP/oybQfuy1m9rBS7vlgRqX8H7P8q9k2LccSQJgILxJz7xiXIa1W+j4J2od3lOunbIrq196W1HKtjaaHg+/vjjy9erPg5zNela3Dsv9GOsWVCCMwPXjocs0PFKvAUuPH3oQx8qH8A4KeHNrt6GxvcAYOrFo258FpXpExjUleiDQYcc4VWf61YfTjqdW4gcA3iwNhnvete7yvWytozDDx36KZNNk3byohHe0IbPOCV82mpZjZHG00lr+z+H3k8P9MiRK82j32T7+NUm1bW/E7P39jaMnCs8k5HQib15Zg/mORu9fvKwEX2x49hgP/iZ3k6vdFTn6CQ6dxv0xje+sfgMr+7YhFdF1ix9W48yHJORav7Qi69wI+GvLbJbbcngWxotDUx58OfwnD4FeO8LvRsUwHzw5BQraAliMW4OhSEZ5525ILrbbruVk70PVHwkw0n63XpO134pwGF5Ty072Qv02iwcGw8bjeyi4dcXg0YTXGjH8HtL8GBSGiNAu6qzc/dOz9f9ZOPMyRSccZDqaAsA/uiKkhxgfWDl5G5T4yaDDDYS4Nw6cArex+YXCfBEb579IR+bIc94dyNirN8/+9mPa0Z9eMGHseDiUCKXPvonn1JdVgfT8rzpQEClY/qmO7dD/kqfGyPz4kbM+shcKicjZe7NcWwdf7GHfjzEJpRgjY1szTb+f9uIbscr6dCatOlzM7nBBhuUU7W/eWLjbs0Zl7VnHU5GQjNzm2d1/thHibmxxI85j2yTwVujMXcamPLgH+NgOJygU78Pmzg7Rs9wBGUnIgYOHqy6d+xO7q6tfansXZkrUpsCH7H5eMa1vpsFiwisxWMDIGnjlFZYYYWyIcgCgh9d9TgwdGX1fomBGwdGBg+/ZxsOtxl4yNV/6ICRJePJtuaaa5YNiT/Y4vWCTZCbAjtqHwSRSR+cbjRsEnzRLbhzDK6MbRDwhD68XnV4t18HEpsljg***gMb3iJr5NGevpTkRCdlFnorJz7xRz+xq+jeXNk0mifv+q0Dthj7BzcZCX/mOHziS059vDLwWUuxGzY9Hnxre+01f+Y1eolt0Csf4SDg9R5fSbdZg/RtDD1PVkJbYhN44af9csjhQ18OEvrAtDRaGpjy4M9g65R6jF9fntPHkFzvu8JncE7TTvpOwRaLr9GdrH1o56cqDFFwA+uazPcFgqgF48Ts99OSOkOVQ7PmbV6ew2vKfmPRqhewZ4vbR3g2MjYvsqAt2Lv+4wD87tu1HxjfFWhzY+IVg8VHR3QhS/ByHr6R8PMv49Rr/urnXn719etPuxIdNNFXT6ld0hb9pt5LazLr4cfc4xG/0Qs59IfPPE8mfzXtqaI/P/JGr5n/2GJ0rD92Mj/4J2sM/iU2G1nCe0rtybHzQfGHRp1663Wf5zn198LPb73Xb/GvfibIJ0UHk8XL/Mow08dNefCfnwmw0Lybd2Xt2XsmAdwp2HWT/+LTT2BsAPwcyfW4k7HfJ9uN+psCebfv5zI+CszijuNXn6yEVnbu+BPkBXf8ukZz6vcXAl3rOwnaxLhaU3f7sf766xcY3zbYHPgrfjZH8EYueiIbh+sbB1f8Fumg5axx4rPmAe3ICa6GnSxd99LhoOgmemI/+Ax/+utn48G3NGcNxPnXOjb/cvTNJkdVn+Ebf3hmBzbNTt2RIa9s2ExsZc6amT4QbhpkfzvAQYs+WlowNLBABn8Lz+nW+28L02me4eVq3c9MXGH7mZFA6Arc7+m9O/U1v5Nv3vu7JbCJYMDwJvhb6JOR4vjQTZDxrtfGJR97cSz+PrcNAf5d0/sYTN23Ck7zroi1+ahQ6fVCcMYpcbgWpwxeuzzIBB86KfGQa2s6Tl8dYAdJf15x4ZPe8Ukv+LNp0Za5ASMnTZZthN6CWEZfdEindEa/5l2y1vRpD+yoyYkvdoFXQV/CMxm0k8uzfhl85Bs1WQbND1kjL5l9bGyd00tLC4YGFsjgz9hcjXsvagHGaWvPu2uGqO69t42AxasU9BKEnPLgcTMggYfPAmfYk5E4vzgYtH3E4383tHEhi7Y4Tn0JpJyNOrnICNYzXJ7jkJT0QyZyy2SL41UfZApeNPDho0JleCVLZAofg6Q/r7jwS6f4wit74Mhs**RUo1zFHiu+Rm151o/nq0pOc/sze2VNWcT61n/KCY8W09Zo+o2hvwO28A7e2FDMtnAzoSU+SS3Z2XmeibIPx1kXCCDf3bZMTwLjgNP4FYyxNSziC1YsHFGnsEIjhY1fMmTObkcTByL/4zGzxTjFDmUyKGMg8FzZMGzejYRcIFVgpH1q9MdXRmj1DaoBBfd2oy4fVl00UXL3/n2fxv4+U/+n3lw+MPXIOnPjxzoc+B+ZeL/PvAb5UUWWaT8fwz+J8B8NElf+G1pYg2Y/+iJbmW6c9Pm72n4CaO//f6e97yn2ISbN7Y5qoks1om15dWhP770lre8pXv7299e+Pe37/NnknM7MKqyDJIv85r1G3+SG7NB0mm4hqeBBTL4Mzq5NzBq42g4IEHOs1KqHVHglHUQCrwx2icj4StBGD+cDLnwEsep1J6Ajj9t6rI+YyMn+eXIk+fAK8HLYAaZ8C5o+vjH9werrbZaeSXjlxj5DgHNmt9B0p9XXPj1Ssj/8uanmL4X8UrJ6xW/qKDbzMOgdTWvvC4I8HQUfWWOBUUf5/qWxWs436v4W/K+WfGdDvsc1UQG/Hmn7SfDXqn5j5D8fNd3Q9rBZI2OqhyD5osPMdeyzVt8DF/W0oKhgQUy+Me5UDEjlBihRaiefqWkjCOqYdIfB68vzqsMnKR/wrMFFJ7CS0qsZLH1ymRMcERWZWTJs3ocrTLPgxTT7YprcxsUf9vAzxOj35zwQjs84yvPxtV84w189EAWOTcZ+vVpA+cVgw84/elljlr2TYTsb+T7C5BOamgEN37x7Q8dCVJ4yQYMDNjQCJ/hI/0FWWWP4IyRMiYwkTcypX06ldEZmZwI6dyc+bsFNlp0IlDQM11KSjqR9SdlrpSBDXzoBEZ7nus5qsexEzdsbCJ2YmMi+1mtdnYQ3GwS//j1vRAZ3GTACQY+pXr4V4ZHZeqlsbKTmq+sj3pc4Ee1jNx01CvjqPLc+Po/DSyQwb9N3mhqgCPjzDkBztKfqBVY4xzjIDj2OFZ94GXjwdgsxKlwiGDyfUcNh1Zg4ZQFfwE+PzsS/POzSP8ZilO+7w/gBw83PJy9P4KEjpNqeFRy+uDwBtYzvmR41CXjPNtI4Ms4/BpHNrjV9QWf8TMl+Tnq1ltvXf5vgLyCq+eVbumjnpvoio7MhTpdynQYeGWtbzrXlvGBNwYeH//6K59up9iHMj+r1e6vh9a4zZvvQHbeeefykS38sUW4Qy9j9OEn9qs9cPrwEHuILYXX4FW21DQwLA204D8szc5QvBwWR+gnihwlh8655ZsKfZwgx5g/vqSfMwSrTSlzhvApZactH4n5GNK7+DjaOFY44E0Q4OgTZONY06bMODz5K4d+UQFHjQeMusAenuDiuNXhEcgEBjypB147XsBHB/QQHsHBMROSOfcbcP87pHmkE5l+Mxf0ZfNGt9qjO3r1ykid/mJD4GwufTyo3XcygaFv4+BE2/yFljra8KAtZ47MiWfw9Zwb64p/8803Lx+GmjdtcIAPPh+Nwqc99oFP/MQGjEMnto13fNKL9owH11LTwLA00IL/sDQ7Q/HGoa277rrlete7fie+2uFxcv4SoVOgQK6PA7zooovKXzZ0cvdnigULjpMj9XcbXOf708ZO9a5eOX0ONjTjUKk+zpijhx8O/Z45V6WkxJ+//HjxxReXn1f6uaTx+mR/VtnfgzjssMMKP241bG6cDv0k01+IdH3s7yz4eFC/j9tcH/sT1WRxsvQf9qy00krlP53yVxr9lBN/MyEJpPnT3f4Yl/f9dGvu6IDe3NL4U92CuMDtNY136/6viuWWW67o2F/tNNa8e30Ahp79PQ/v4M2B7zZsMswBWzH3aETX6mjbKLAFPMQWPOsDG/4SxP1Zbn9Tw/9q6GfGxgcOHv+ltb/MqZ/9wOVPjnudlNcJbhdsZPS5gbLhxCPb9yuf9NkooN9S08CwNNCC/7A0OwPxcoScnoC91FJLdYsttlj564uCNGfH6SZxdD4M1C4oy5ynE7g2DtcGwt9v8DcLBAX/iyMnK1Dk/bw6vLIxnKYER3Ar46SVUurowuuPKC2zzDKFX04dnuD2zGn7UE1Q8ieo/Qlp9Lw7FnBsXgR2Gwl/N2KbbbYpzh2MDwjx7HZglVVWKT855fi1hZ/C1DT+x4l+1qxZ5b+VNpdOyOaFjunAs7m2CRNYbRZsxpSCKVuwaTTWppAu/bEuGzA2549d+XseTtCbbrppmVM0bC4zj2hICf5K82985kHAjT2ad7asHw4bD79cMd/wZnzw4cufDkdHmzHmHs/4gs9G0F8kZUf+Aqk/uY2eMTZHPipET13ZUtPAsDTQgv+wNDsD8XKggh3Hx+n52C8n+5xiODpX+xtuuOHYNS2nyNFxhk5AYODyPy1yln4OllO3PgFBIPYHjozlZDnLnNQ8a1NPW57hldNvmjh4uPyUS1ABSwZwnLbNi1O6oJLNiBsIODhsDt/HYn4t4LUEeH+O2U82BaycMAUom5449wSImWAq5s0tkJOuDRLZzR1d07PNkz+17U9Ug3Gd73/pBJNbFbcAAuns2bOLnTnZ22T52x30DKeNnP8d1O0BO9GWuafnzL1SuzmUYzNKfVLsgE3jz+2TD/6yCY0NgTfHW221VbmZCk525XsCp3580IFTvp/Bau+1Bf9Hhw0GfDI8LTUNDEsDLfgPS7MzFC+HyYHG6XJ4cWLaODVO3v+kyKHGMYNbdtllS7AFr845ul530rIpMBa8a18nQdfraMkctD4pzrOuw5d2z+nL+NDUF1h94PwcTfB3rWzT4tkpkzyuo308xmnnewXjnVZdP7sxCE4wAhi8NgDRx0wwFbqPjj2Tn2610YOTsP+Qyn/q5U91C7R+bqlvnXXWKTbj/7BI4KVDNycCqQ2B8fDRt/8d1KaBTdR09SejG3voLTPvYINDIAdX96njDy70V1xxxTGbBmdDws5tFMHiyceE+++/f7m1yDcmYK2FD3/4w8XG2EPWxkywjSbj1GigBf+p0fuMo8qRcnICoRObUzbH6WpW0HRTINhzpBwu5+/9qve9HLxAAAcH6jbA9Sg4de0J2INULLycsP87Pd8BrLzyyuW/ZEYbT1tuuWXZCHif7/9LwI/3vGQl0xprrFGeyelVhet+fWSXPc/0JDDaTNEn/fnVhVsfGwQbL7+rdxOQ/7EyuqU/c2OT5cbGXHn378bA3MUuwA9az3BL7BWfXlH4hoUsbhzc/ticuqHK7Y/XRb4dYSc2rza0xpLZjYI/6w1v+A2NmW4fTf7haKAF/+HotWEdRwMCtCtfpyE/u+PsXYO6CRDgbQqc6rU7IXGSHClY2X/g5Orch14cKXycp8RhcryDTPDbmKCnVPcxomtorwOcOP3RGqdCGxInOZsW1/2uuL0KcL3rSti7XX8NzvcLNg4cu8DRHHxXXpWYX3MqoLth8QqFXunUjYlvBgRY7WzIB33sxm2Bjz+dvG0EvG6h62ys6mA6SNswd+yN3bEF/6uozYnvFdgIG/aB6iabbFJsgT3YlOCNzZ5xxhnlFQeefT+SD1jxzc7wzW5aahoYlgZa8B+WZhve12iAQ+PYnNCcjDlDwd0VulMSR+7K10mPQ8wVOgfo/2QA58pXcM17eQ5yWM4d8xy7EzuH7vTmZCl7x8zhX3XVVeXnX+RycvUVu28c8IpPJd6N8RpAQIAvgSk6eY2iZmCFbn24R1d07iRMXzZ+bIEebZh8CW8DaANlTpL9GkMwZjOu2M0B3crwyYPeGJom+NmfjYePV80/G2YXNjI2smydbfiZIL4yjv3Y5LBp2SsMdiGTH14ytdQ0MCwNtOA/LM02vK/RAOfLmXHESs7cyc4pSBtHmucER3CcZBy4duMEhTjI4OUsB53gFrjhTnYC5ezxqk0//vCl1K89gQHPwQEfvo0lm7rc0v/9NJNO6Da6o886GNJxdEfHtf5iS8YaJ4HxnPqg9WxjKrNHfMaG0Y194hmf2sDI4PEUe9dvrL7IqE4fLTUNDEsDLfgPS7MN72s0ECes5NQ4Nyl1DpDj05f+lJxkAqhxHKk+Yz3LkrZBJnThRjuOOs4c7dpBoy2TQ8n5O9GCkzl2pRT+jQc/01PmkC7oKPOojN6jWzDZQNFfnvUbC5cNhKBM5+CTB6nn8KxEFz2ljGf8xFaV7CZ9+NAma2NfkY88yfpbahoYlgZa8B+WZhve12iAA64dNKenjYPjpGtnCC5t4OIkwTs1cbhx6METJ/waoq+zkkAfvtXxUjt+faHNaevPSVB7xiozNjxn7Otkc4EfnmCZOaeXBG461K/MnOcZDFj9+syPviTPsR1wg0xoxx48C/54qOmhySbAedYHVlnDsge86tMOFj5wLTUNDEsDLfgPS7MN72s0UDs7z3Wq63Hsvf1x6nGc9Riw6a/HDeoZbjnOuJcWXjhwybPMgQcu/crgCuygeFzQ8UQvmV/669VXdAY2Ok7grPuii+AMfNoHVYZ25h5ez3LmHG0yKdMeGWNP4YfMkrGSMS01DQxLAy34D0uzDW/TQNNA00DTQNPAiGqgBf8RnZjGVtNA00DTQNNA08CwNNCC/7A02/A2DTQNNA00DTQNjKgGWvAf0YlpbDUNNA00DTQNNA0MSwMt+A9Lsw1v00DTQNNA00DTwIhqoAX/EZ2YxlbTQNNA00DTQNPAsDTQgv+wNNvwNg00DTQNNA00DYyoBlrwH9GJaWw1DTQNNA00DTQNDEsDLfgPS7MNb9NA00DTQNNA08CIaqAF/xGdmMZW00DTQNNA00DTwLA00IL/sDTb8DYNNA00DTQNNA2MqAZa8B/RiWlsNQ00DTQNNA00DQxLAyMR/PMfWPiPLzznP+3If4ah3f+M5X+9yn9+MZ5CMlZf/mMNZe9/oDHe2OneVus2+o6e1PMf0XjOf0SS/1wl/9EIeP31+KnQG36S8eI5/2mK597/OGVueTaWjUXO2I328WTupQlGW8ZnTMrS0f4ZiAZqnXrOnHvOfNW+ooYfCAMTIEFfUsaG2FXNW3hM/wToWlfTwFA0MOXB34KwSC0CZe1Q86x9ToGfduCS/Ref+W9CLbIsxqFocAFBGl3Sj//vPHW6laOnlPlvUtXBqsfBTrU+8WMzGB7JhLfwib+0+S9Vydcvgc1YMGDVgz//Ta8+sNqDE41aF6lHt/jzLMPZ0uA0QJ90b77MiWd65ieif23+a9znn3++tA2Oen9MbMC84wkf6niMbeBbvzb/9XPq/TG2nqaB4WhgyoM/sSwMi8BisTA4V89ydszaX3nlldI2kSoyLk5ZHe6ZnuiBnukwzpKetemLs6KnOKSU+iU6jXOdan3iW8ZTSnzK+I6M+uc0/8aDUZLPMzzqwZ1NAXz61GOnnrVFR8ZrC2/hZap1Np3oZz5qnZuDzHfmJHPIf0xGCj30M++xB/zJbCx8hv/J4K3RaBqoNTASwb9etHbqFo5FZPHIccZZ0LUAvc9g6sWm3lJXNlX0QK/0w/lwiJ5l7eYhugerPzpPf+ZqKnUaPskghydOFb/ZoIR/MBMl48FGxthP9KOfHYZOXWqv4eCwKYAjm6vodyIeWt+8a4CuzXfmK8+Zd/OkT2kuJiPhif3hAd3k8MRe8MnP1TCTwVuj0TRQa2Akgr9FwEE//vjjY6cpV2IvvfRS9+ijj5YFZBEHrhagfn7iiSe6Rx55pOCyCOOI5+T8axzT9ZkuJM7I6f/ll18uTqoOlGD0c061Y6J7mR6j16nUU3jAD17JkEDrmWONLIFV9kvwkNdY+NTh80wf0REc2QRoC43otN4IwAcHXNqVLQ1OA/Rpns1Dnuk7tqo0L/rAyJOV0IqvUlpv2rxuw5dnNsF+YiOTxVuj0zQQDUx58OdgLQLlnnvu2Z122mljDvjee+/t1lprre7FF18si8SGYKJFfMIJJ3QHHHBA98ILL5RFFmcdYWdyGSfIEZ199tnd3XffXZwj52QjcN1113UHHnhgd+ihh3ann356d+KJJ3azZ88ec1gJevDIo5A4f7Zx/fXXd/vvv3939NFHd2zgoosu6m688cbyTpU1y4UwAAAcxklEQVRdsZt+PGsHE7nYzJNPPtldfPHF3ZVXXlnsTZtAoszGInhvuummQnOnnXYq9nvuued25513Xnf77bePjbWJbWmwGshcmBcB9Zprrun23Xffbvfdd+8OOuig7rDDDit28Oyzz4594zJYDsbHhh8+ypxfdtll3eGHH95tt912Hfs49thju1NOOaXwxX6eeeaZsc3K+Nhaa9PA8DQw5cH/6aef7h588MGSN9tss+6MM87oHnvsse6hhx7qrr766m611VYrp3lO1cZA8LLwOevs7KOeU089tTvqqKOKMxfU9NsIxPFnHPg4+/QFR13WMMbWKbgyHr1hpPAwt7gDr+QUw7dnjvCQQw7pBKzoRVDnrNy6LLPMMt1KK61U5oCjWmihhbq99967wKIPLvjmlp+5gYsOa9i01WVoK+XIyE6WWmqpbo011uguv/zyEoTf//73l40MuTnaOSW4wAUv/dgIsUdt+sCYZ/U77rijOPRtttmmu+KKK8Yc/nHHHde9733vK5uHnESNZYtTmfCO76yZ1MNT5A6f+uXJSOiYp/BU0655CO94ylzFxgXSDTfcsFtxxRW7Sy+9tDvrrLO6pZdeuttyyy2LbU90aJhfGaOz8IgXPN58883dDjvs0O24447FTvAqn3POOd0SSyzRXXLJJWM3A9pbahqYCg1MefB3rX/LLbeUU+amm27anXTSSeVUeuedd3YXXnhhcej33HNPOZnecMMN5eRlkT311FNlEV177bVlvJOW09+uu+5acMGp7YgjjignQwtVNpYjSCDLwh1P+RaynHFZxMHFucOj3ekS7CAT3kJrbvCCF8zjEPEVGfDpNL/XXnuV07J6+FU6qSy77LLdbrvtVnQMzxZbbNEtv/zyxYHhAz64J9LZ3PDZCxMe4fbsdM0u1CND9IB25PMM3il/ySWX7Gz+wDu5r7766t0HPvCB4mQD30t3TnWvkNZee+1iT+hE/rvuuqvbaKONum233bZsqPShIbOD7bffvmxm8SzR9VQnvOAv88528S1pjwz6yUm34X/YvKMTvvCiHvp1X/jSJ+FZv3a3V6uuumoJuq7X2a+bgEUWWaTjIzJmULKELrz4UKLJFtdbb72yMfQrA/Iku6WymWY/xkuD5mtQ8jU8018DUx78s4AtkJ133rlcidnFC+5OdLNmzSqnfSd+i8tisXC8EhDIXPmCNcapa7/99it1p9yHH3647PxdcxuLhhJNmcPJIhxvqgOnLwsYvCxYOgVyomg5KU6Eazz8c2oLrRou8qevt+QIa50aawwdrbLKKt35559f+NQGllxwPPDAA93b3va2cmIynmx0b0NgIwUmsMYOMkUG+NG22XN1S6fq6OnDkznzrM0mQXnyySeXW4pbb721BAE3R14XrbDCCt1zzz03Ju+88oy2a+Stt9662CC6gvvmm2/erbzyyp0NKh1KeNOPP9e9yiQ8knGQCU55XlKv7rLJcvNmrdx///1jdk32QfPcj1d8oUWH6GZjEvn0gVGnb/XID96a9r3Pwgsv3B1zzDEFh3naY489ukUXXbT4CLIOMqEfPvAt24BsvPHGZeN53333FR7xxy7A4t2tAF8GPjIoW2oamGwNTHnwzyKwSLwbO/7447vbbrutBJwzzzyz22CDDcYCgEUSxy9Y2Sw4nUkWlyBw5JFHjjlhOL1rs0HQnwUIhz6LcaKFBx5sMlhO5YILLihX5G984xu7N7/5zSVorr/++mVBD3IC0a/584xnPNh89GYnC69ROE+wcfbwuL5efPHFi74id/QB38EHH9y95z3vKQGAc/Jq4B//8R+7ffbZp9D733buXcW6YgvD8D2IoCaKx8DIG9BAIw+ggofAQBFBBTETNBAUQQwUzAw00dQrUEEE70LM9D5680x4pejda/1r9b/sZvceBdU1Zx1GfeOrqlGHWavFkXdqpx3ghSlcJnF9wcQtvcmBTjDzHEzKOu157rnnzv7++++NE9/9H3300bPvvvtuaxM7wcocgx8eR8iO8Rlt9btPcM8995x98803m+w4CZc86uM8wy9NHzqlI5P8/K1ky6eMCQoWC7oXX3xx67/6sYWfkxL6wixPut1K9u2ma0dcW8DbLVuoCrW/hTX/119/bbjiM77hpJt7FiZ/9zSUder3wAMPnH366adbO8l/agczPGH6+eefz+69996tb0iLQ6H65WvB2hitXU6NbeQNA7di4NonfwANCgPEZP7jjz9u3/wd3fqW6njVAkEeA0VoYJn07cq63S/esa/JX3p533333e3Yz+6ggcfYmDjLdxFJyvNcBoYMk4BvwS7y2F26Y/Dbb79tC5Z/w1iGIRyMxrfffnv28ccf/5fHxxdffLEdPcZXRvK11147e/LJJzcO6C0+vfDreNs3UvxbMDm6NMExuvLTHZbKXMTZZeIyirWr0OJPX7CQUSdeYSiPOOU4O9Znnnnm7M0339wuVL3zzjtnr7766nb5z2KoNl55PAan3fDdd9999v33329YyHefwAVJnMRH+OK98Hbr34WVfBzQ6xDdam+hExWLbIvYl156aWtnnNPVQlAfs0g4RO4ufMfG+8xjp+5TinsUH3300dkHH3ywfTe3EPz666+3RYG+wNOfxy+dXnnlle3eh9M/nw9tGtgCCwf9mz+lw0111w4+9zhp8JkhmyUPr5/IB7NncWSI48cNA1fNwLVP/gYCb0Ab7G7D+ibmNrob1wy5gWSgNKDk/+OPP7bdocszdjHKMBB2gQyZd54RcFegekz8X3755TZxulS4z8A1ODPyBq4jZZOK+wiMFWMJVwP71A0IQxjVgSfc0Om8NyHxLu/Juxod3z5dnhRPXkbJMy7tkvxSwrGpHZQb/yYBOqtTPhwqd0pHvnosoEyw6nfa8Oyzz27G28VDcXZy8vL4hoMudnpONJxcuNNw3333bRerYCU37HF4DHYynCbY6VtUkeFugUuR7US1PwcXTGH0LH+8HVPvrfImU121p7h9TjoueJO/3bVfc7z11lubLvUXIbm4u5XMffUdk6Ye49JRuQWIT3q8fi7U9n/++ec/bbnqrCxd9FkLYotXJzUW5y1Y6y/HYLpVXhg49WtrvPrMpG9YyHCNH+lhiV/pnvNbgfkzDFwhA9c++WecGVo7Trt9z7yBzzgZvPL5rmcQGTB2/Aa4CV68Cc/Pe1z68+7kgFGwG7YYIK9BakFhl8uo7DNwyjQ41a88w8jg26HYOUnnyOn5lO1H7oqx910hnOtiBCZ5H3nkkbOnnnpqe84oSZPX5xVHvwws7p5++ultIUbf6lEmDoWncuST5zjd5O3Cp4taMGhf73ZzTlzoJq82EMLkiN8Nb7fvneZY5HzyySdbW8gTF5dpG2VM8nfcccd2UYvOPo24O2EB2KJQvnUi7j3uYDilI7e+uNZ7qzqUwQl8Qvcqvvrqq40jaZy0xpjnq3Jr/eqNu3QVt+YJqzifKnyi+v3337ex6TTjhRde+GexgCN955Qu3p0mesanhaG+4fMFvOoUSit/ehUPk7hxw8BVM3Blk78ObgDU+Q1aR4t27n6eZZfvSJVB8u3sp59+2o5uX3755e3ZxP74449vA5yMBtc6cBz7mzAMtuL7xtlgMyB9S3SknDE5lnRHzY7Q+6cd6iPL7sWzOiw+TE5wSOPVa4KyeGA05DUxZDyUFy8fvJzy6UIGfbqF7yb+6p944oltgvczp/BkdMonXh2wqUOdPo3YsUiDyZG7b+bq4kwGPKwMW5MDPZUxEa73D8TV1srgyXdY+cgMU3mEyvDyu2/gCNWRbdzKszrY4fC5Ah/0gee9997bDH+nH7U7DsNd/eI8q1Mat9anrLslJn+nIt7d7XDSYNecnsqomyz1eidTfvzaacO39oe1L+BEXp4MsnCmn8gX3viG2+/a/bwRLuXFSSdjl5NHutDu1E/R+l8G6S2UDr+2FpILO0ze1de3eO2OOxil07W+IB9vES7UB+ikjspUn13/Y489ti2uHJ37SZzQYsuu3gVLY6r88eXdz+r0V/0adsf97uLQMe7URw8Y6CCfd3jJoI/+Ge/kxz99yCLfszzkFCrPv/HGG5sOTuTUW3ztggc8hh0m9cvLedZf5NHunmGCQx5yLEblw6d0OGAnGx5+3DBwCAPXMvkD1uDTuXVqA8vO066N0RHHIFgIMMA6ewNql2Imfz/ta9AZZJ45ZTNkv/766/aPbgwieY51FhgGut2oG98GK6NAlgFp8DNWPkdIo6sb7G6Ju4TG+729RQRcjJrfADtqtwv3cztluRUfOXRQF+znPUPASDEWyuGQfJOU76AWLOEsXX4nAp999tmWV347qPvvv3+7QwE/DsXTy2eUbrPDo42czvgHO/4Pg9BpjDRGyY7ery2UcQrjtEQaD0PtI4RTnONeHMB6kUsnC7gHH3xwa3O8k6FtTRjqSf/qEuKGk1Z95OHVu/g84wzLQw89tP1KQnmLUqco/iFVCyH16r9+5kVXfVocXeT3/wf04erzTdhC1+cM3955n6Cka1P9gP/ll1+2799OucIGAwOv77lz4ns4nUq/iC9xsKSnUHm7Y7/+sPCmf7yS5RcAFlUuihp7FjvGFj58YumuwOeff75NVD4d+eTm2N0/i3L5ll5OFiza6/NO2+JGiGs8q1MbwklH8fCESV+QPy+/NH3AKZE7H97p4dOBfgGbd2Wkwe53//TVr+nkE6Ax4Cd4xie8Tg+1oXT90KdInxQslKT5RZE63YlRB67UY9w4edLPLQLF8fhzidX4CA9MFnAuqhpD9NUf1KWvaBvv6mUbcITP/vcEvPo6fE4h9ScnZD5FjhsGDmHg2iZ/4BrkDKdv1QaSzmswGqwmD9+B7VDs/B1JGzy7nGPjJv+MCDk8Y6E+A/H555/ffsJm4pbvWPfhhx+e3XXXXduOg0Ehgw4GsEHNaDNG6pQGM4Nkh50OFir0ZdQYE3rKrzzD79ITdx4fHXb56lIfnSsrv88pDJPjcWmMCaPFmNklMVgtRiwinCIwQL7F24XA5fOJXZYJSnlyGTXt0wSVXtrOM+OKc8bWTzdff/31jauMN7kcTJ6FMFoE7pr85WMg8XbnnXduOtj5iPepyLfXt99+e+tTLV6EMGknobYy2bSzNoHKQydypOOPDj4rkCteHjox2k4nGGQGm+G14IBZWfoJncK4y+KdJxNn/Y8AbWUxyZOt/yujLC7sYi00lA0b7ulhoWXCIZOXf5eL3zBo14cffnhbmJhcyIMljxd9Q3ubCPUN91yUxzu99Qf9HDcWNPq3vmNc9fNBiwxtgZd+jUE3nj48meotDCu+w0M/GONAefdvXH6161d3Cyjl9F13XGweam8TslOt/guo8iZQsukBKz6dHtlhd/lVuziNIkcZCyY/M9Z/yISlMYEXp0MWxNqUTXJvxT8p08fSnUx9GDfGvnd9DU82Cu+///7Gl8UXzLihE33woA9ZZBtbFls//PDDxpV2GjcMHMLAlU3+wBi4BpowZzAwKgaNwaczG7wMnDSD3+7RBTAr9n0GzuBhEA0yMtY6DR7yxNuhkWXwXsbZ5TD2jB6c4W1CZNj99CiDrG7vVukGuXx09R/JrP4tRtKbvgyanfqKf+VsF+b4VS8nDJPdorsOjBE8MDNYuPDpxS6HcYsnJw8MI4OKJ/kZKTsjbSCfkFEzSZgs1O/7q92VXZJ/umKxo7w2wYHdKkz1A/oqR5b2EQ/r+hv68/rKA6s6LLRgJx+H4i0eLDQsSGpzk5NFihMIOihn0vaZye7RgssJTBOMdqKztrT7Eu8dVnX5+ahdvgmCQYbBJEkf+qaPScmEomxxODOBVgc9TALk+fmdeN5EYPK3q6MzTw5nIrWgi3dp5MN3kRNfHqG2N67IgBdubSqfusnXliYxk5TJxqQkn+/adrEuQToF0F76iT6LW7Lj3e7VmNTmOKyNYVAXfdSv7eDn4ZBe3ngPnzxw4Ec/8dnQ5Gwilqas3bQ2r2+QYeJmI0ysno09esLrE4qJ1n0TtghWOpnInVrABw/v54P6T+0U5nhkF5z4aGdjyAbhvI7wW3SxQxZ8Fk3GPZ70KYsu91lsNLQDnbSXz1zGrD6oXpO9Exe6yAPTuGHgEAauZfLXSfN2IAbgOvibsAwYA55noBnXXcaNsgYZIyW/gcGXX6jODAhjIP0yjqwMHJneeTLhdIzeRCCdPgyGge4ZBgsex6p2hSYgZcPkmJhx5cIdX97TbVeoDkYqTELGwumKiYyRlIfRTj59xHmHb32Gizy7I/x6VjeZTlosCuRXzq7VbX1GlOEUrx3lF8+oVae09KJrHJS+r20YTzKFlfMednKlhQtGR6VOCBydMrx2bwwt4+qzh7YjI1x0dedE3xQHl3T1ZfhNEp5xIl796haamP2TpHiWTo5Tnf7Fq3x2bSZSiyYTgEkt/BZQdprki4PBMzlNpuEia5+TjyOfHrWjeFyFW7yJ3gLH5I0nCxPtbUL0szqYTDq1LZnKWMjiExZx+riFmPrUE4YVe/Hy8HFdXriKWzF7zsuTlzdc5deGTiosCixWLd4trLSJtnDSVB+BjdduFkc+cZjM4XEq6WIyXdMpzvHDkZkuPcMRvvqTy6wWx+r2k2ETuHxOOS3S8WxxQ0Zl9F0/w6WHha7dv8WMvmYMq2PcMHAIA1c6+QeowS7UWRkezw1acTq8OIPYs0HBoIjb5dZy8q0DzjufjDXvLnm74hvQQobfQFeXd7s4xj3MdpOMoN2S3Yb6DVq/Y7YLZVgNdHKk2SXaLZqgYcyFv/ddoXpXHZXLSOHZ7sHux+KE/JWT8iovjc+IOcb1L3MZOPF2g/Shh10Xx5CZ4O2oGTMLDXXyjJTf4zOe3sklB15h+nlWvzzidjnl41iZ6lEWxnRukmFgGUzt4ZjUjtBJCB0svuz20k2fs6Oy8+onZuSrhxEWxgsMK/bSxDsRsHMTR6a63ROwuGuhoX6nC/qNzwgmVWWNBTtR/zGODmSI71l/gSmu4PG8yymrDDkrxnjWf8kQ8na2dIXZaQQuyPCd28RpoW3HajFAB9wqZ+dv4QeLNtc/cGkiTYf4EpKpXmmw9CyNvMLy0a/y0tVTm8hTO5VHWDwd8GdCNYFagKvPws+pVBOp8Un/+g49lVWX0wQLee1HtvLxLhRHF8/n9ZGmDYQWD07/tLNFiM9hxiS5FoIWTLh2N0jfUS89pa+nARavThTJJEs4bhg4hIFrmfxXYAZKvsGjAxuwdeSMwBq3ylifk6WsgSlMTvnkuV3XgCeHPHU4ujPhMXiMuUtPdpi8yd8ph0HNqLvYB58jS9/07DLtMvyvgi5Fncd9CGYy48BzjizxuGTkGPU1r3zy4Lh2kO7ZjoLBtxOxYGFwHJNbSNjdM5R2LXQSx9DbZTnVEI8LR6d44DKK5KdjmMN7SHi+X5CRoSfbM4NoweHEAU67PBgdzTK44hh/bSIvmfBJt5gJH1nkc2uonpz46nWapV3dpaC/HbTFgN2e+wIuTzoSxqOdsnpN/L5HS9MvHJebqJKZ/DCID5+0cIXnfCi9/Mqu7+knzsSuH5p0cGGnrN/iw9E+nCZIny70Be1KP3qarOhlknOiYTz4TKbefLi8q2/1q05ruufGXPEwh5vM+u2aTjY9LE58gzehW+RZcGkji1qfNixgfSZyD8fdDSdaTt/oTU/pytmVm/wt6NVTXeqH5byTnk7a2DM7gS9tKx02C1CnUsaLzYM7Qu4duFjsxM5iGi7c2/1bfMOPX/2kxSD544aBQxi49sn/EJD/K3kMQN/KDVaD18rezsgzI2IXyYtjKAx8Ew5Db6DLZ5eUsTil3ura5XfVw3DCCaPvjHYfDLmJ3ckEA2QxwIDSSygvI2zSYDDtcOSjG344MjNS6jilI5d8cns26dqRwtg9DYbcUS7eLYa0iTImB+WbaI7Fpiwjb3LAl4lcvbjAmYWd/oErnFiYxJe69RMcS2Pc8andOPh6PhbXvvzw8vUPkzy88OBQn4TDog4+uOhpkcBLxyHMQu2MX8/uX9jRXpWLI7q0GKAbjE57WnjCJa+TGO0hlGYipoc2o5u20GfoRI724y/TP3AJF171ixaX3p2eqEMf8bnFLt+ihT3RR2CAq/EEC14tFmDWHvD/G/3jqtpu6rlaBmbyPyHfBiSj0ARosBuQ3hkaAzTjZMCLF5eXpoxBT9YpXYb9onBXPXRhkMKlbFhh9C6NHnBn3GD3LE1+cjxXtzjvnLhTuuqF2zNsjk99ioBLfdKa2LzD16QgvB1c6nRSQg4defLVzatbndLjKZziPZfHe87zylvxpwiTTb5JG+baTdqqR/qYnOglX7zKm69M+U+B8xAZ1S9vfKUDblfO5SlNe6QPzOkkzrv+rs/0fgiW83nUhV8yYPEez/Gk7T2v6bDJW6h8NkW+ypI9bhg4lIGZ/A9l6sB8jKIB2aAWNsgNUs9576UzLAxOE6k81+1gCGMh3eD03jOc9BCXcaSHuHWSy/DKX/lT6wkTDwfZdkd2q04rGFZOOmw8TGH0zKX3ZbCplyNbfcJ09Uxm2NQbXnlakCgHS/nDdBk8G5hb/Knd1OlZvXDVF+Ft4tO/5UmPMHoXH7eem+ikyXcVTl0wCDnPcVnbCMNa+vouXbxQ2fLLE0fJP0Yn5Tm8Jtt7cuNdHdWrL/DqE8Ilv3cy6ivJLjwG1+T9/2RgJv8TtrsByaAbgIyl0I5BKK2B27vBy2dAPcvDOBj81+0ygOkCT3F0WLFnFAvp2+ShjHeeE9I5vU+pZxySHcYmd3GcPLx0cTDDGPbwXgaX9uaSq47kMdS9q2vlIVzFhU/+1UnnT+nSX3upr3cY6KG+Jh7vxctXXngu0i09To15l/7qwXe4va8cllYIf9gtVsTzyvHkeMeNZ/mFq8xdWM7HNx70RzKyFWR5xxUf5uopvXjlyqsO+OAK8/l6530YuIiBmfwvYuWScQZfhsPA5b03oIUZDfGehZXJEMkn7rpduDIqK1a6pa9nbjVqpaWjPD3Tr/Kn1jGM5MMDRwY7nOqP64w6bLz84fR8rFNGPepYZZEDm7QVo7pgaSKQbxc/5FX2WFz78oe1etURHxZ+MKdX9eNNHA9/2ORVVthpgXeyr9JV56qT5/QShr0Fem0jnzQ6yle8OO2Eg8s4cpTHF7nx7L1nYbjkqQ+L572TEyZxyodZ2XHDwCEMzOR/CEtH5DEI+SaVBrM4LgOwDlKDPCPTYG8HeUTVJ88KI7wZqrUCO8EMUMZHvoxQ+p4vS2a6C8u3yr6dZ/WtxtR7nKrPhCQU3xF2baKtwh/Gy2BRlicr/to5V0f9AlZY5OtZOXE8F97LYDmkDPnrZA6bugtLh5ETSotn6Vw4Vw5xn+wt07/8J2wrnvClkzT5tEmYxcHKxb+0vDTlk7VlPPJP2MjAH9ezOsXJw4uvP/QuPb/GKctJ63mLmD/DwB4GZvLfQ84kDQPDwDAwDAwDN5GBmfxvYquOTsPAMDAMDAPDwB4GZvLfQ84kDQPDwDAwDAwDN5GBmfxvYquOTsPAMDAMDAPDwB4GZvLfQ84kDQPDwDAwDAwDN5GBmfxvYquOTsPAMDAMDAPDwB4GZvLfQ84kDQPDwDAwDAwDN5GBmfxvYquOTsPAMDAMDAPDwB4GZvLfQ84kDQPDwDAwDAwDN5GBmfxvYquOTsPAMDAMDAPDwB4GZvLfQ84kDQPDwDAwDAwDN5GBmfxvYquOTsPAMDAMDAPDwB4GZvLfQ84kDQPDwDAwDAwDN5GBmfxvYquOTsPAMDAMDAPDwB4GZvLfQ84kDQPDwDAwDAwDN5GBmfxvYquOTsPAMDAMDAPDwB4G/gOLCs/8dK4DywAAAABJRU5ErkJggg==
从 STM32 的参考手册中得知,在 VDD 上升到 1.8V 之前,NRST 管脚由 STM32 内部复位电路拉低, 此时电容 CNRST 上是没有电荷的。当 VDD 上升到 1.8V 之后,由 STM32 内部复位电路送出一个 20uS 的低电平脉冲。该脉冲结束后,STM32的复位电路取消对 NRST 管脚的驱动,电容 CNRST 开始充电。随 着电容 CNRST 上的电荷的增加,管脚 NRST 上的电位逐渐抬高,当达到阀值 VIH 时将被 STM32 内部的电路识别成高电平,从而结束复位过程。而在这一过程中,电源 VDD 的电压仍在随着电容 CLDO 的充电而 抬升,当 VDD 的电压达到 2.0V 之后,STM32 进入可靠的供电状态。这一期间,两个电容的充电过程 同时进行,但是,谁先到达要求的电平高度却是由两个充电过程的参数决定的。如果 VDD 达到 2.0V 的 时刻先于NRST 到达 VIH 的时刻,则 STM32 可以顺利的转入正常的工作状态。如果相反,则 STM32 在进 入可靠供电之前,提早结束了复位过程,从而导致复位不良。
其实,220Uf我都觉得大 在我看来电路有点问题,又说不出来是哪里的问题。
一般都不送0.1uF么 为啥搞这么大的电容呀、 其实都可以不加滤波电容都行,不过加上是比较保险而已 复位电容可不能搞大了,不然系统肯定不稳定 这个我遇到过 我也是用这款MCU,我用2个470UF电容并联滤波也没见有问题。 这个问题很新鲜啊,以前从没遇到过这个问题,上电缓慢竟然会影响复位
页:
[1]