6552918 发表于 2023-4-2 23:12

【开源活动】-基于国民N32G45x的SD卡IAP升级开发

本帖最后由 6552918 于 2023-4-3 09:35 编辑

#申请原创# #技术资源#@安小芯

测试条件
IDE硬件编译器软件包
MDK 5.38N32G457XVL-STB V1.1
SD卡读写模块-SPI接口SD卡、TF卡.MMC卡ARM Compiler 6(AC6)SD_SPIFATFSFLASH_IAP

1.   硬件部分说明1.1 硬件说明使用N32G457XVL-STB V1.1开发板,因为板子上并没有集成SD卡槽,所有需要扩展一个SD卡槽,SD卡支持两种驱动模式,一种是SPI驱动,另一种是SDIO驱动,因为我手上只有SPI接口的SD卡模块,所以本例程使用的是SPI驱动SD卡进行的演示。SD卡读写模块-SPI接口 模块SD卡读写模块-SPI接口 模块 原理图为了做兼容性测试 我准备了3种卡有SD卡 TF卡 MMC卡1.2 FLASH说明N32G457的FLASH有256个页,每个页大小为2KB,需要根据使用情况对FLASH进行划分。本例程FLASH划分:

起始地址结束地址大小页数
Bootloader区0x80000000x80037FF14KB7
升级标志去0x80038000x8003FFF2KB1
Application区0x80040000x8026000486KB248
2.   软件部分说明首先要准备一个编译无错误并运行正常的工程文件(建议使用厂家例程库里的工程,我这里使用的是uart的printf工程)2.1   软件包移植SD_SPI驱动移植在工程内添加SD_SPI的驱动文件添加.c文件添加.h头文件路径sdspi_port.c文件是移植的接口文件,里面需要根据实际使用情况实现接口函数,包含SPI初始化、SPI时钟速率变更及SPI数据收发函数,我这里使用的是SPI1相关接口函数如下:/*
* Copyright 2022 MindMotion Microelectronics Co., Ltd.
* All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#include <stdio.h>
#include <stdint.h>
#include "sdspi.h"
#include "n32g45x_spi.h"

/* pins:
* tx : PA7/SPI_MOSI
* rx : PA6/SPI0_MISO
* clk: PA5/SPI1_SCK
* cs : PA4/SPI0_PCS0
*/

#define BOARD_SDSPI_TX_GPIO_PORTGPIOA
#define BOARD_SDSPI_TX_GPIO_PIN   GPIO_PIN_7

#define BOARD_SDSPI_RX_GPIO_PORTGPIOA
#define BOARD_SDSPI_RX_GPIO_PIN   GPIO_PIN_6

#define BOARD_SDSPI_CLK_GPIO_PORT GPIOA
#define BOARD_SDSPI_CLK_GPIO_PINGPIO_PIN_5

#define BOARD_SDSPI_CS_GPIO_PORTGPIOA
#define BOARD_SDSPI_CS_GPIO_PIN   GPIO_PIN_4

SDSPI_ApiRetStatus_Type sdspi_spi_init(void);
SDSPI_ApiRetStatus_Type sdspi_spi_freq(uint32_t hz);
SDSPI_ApiRetStatus_Type sdspi_spi_xfer(uint8_t *in, uint8_t *out, uint32_t len);

const SDSPI_Interface_Type board_sdspi_if =
{
    .baudrate = 1000000u, /* 1mhz. */
    .spi_init = sdspi_spi_init,
    .spi_freq = sdspi_spi_freq,
    .spi_xfer = sdspi_spi_xfer
};

uint32_t board_sdspi_delay_count;

static void board_sdspi_delay(uint32_t count)
{
    for (uint32_t i = count; i > 0u; i--)
    {
      __NOP();
    }
}

SDSPI_ApiRetStatus_Type sdspi_spi_init(void)
{
                SPI_InitType SPI_InitStructure;
      
                GPIO_SetBits(BOARD_SDSPI_CS_GPIO_PORT, BOARD_SDSPI_CS_GPIO_PIN);
      
                /*!< SPI configuration */
    SPI_InitStructure.DataDirection = SPI_DIR_DOUBLELINE_FULLDUPLEX;
    SPI_InitStructure.SpiMode       = SPI_MODE_MASTER;
    SPI_InitStructure.DataLen       = SPI_DATA_SIZE_8BITS;
    SPI_InitStructure.CLKPOL      = SPI_CLKPOL_HIGH;
    SPI_InitStructure.CLKPHA      = SPI_CLKPHA_SECOND_EDGE;
    SPI_InitStructure.NSS         = SPI_NSS_SOFT;

    SPI_InitStructure.BaudRatePres = SPI_BR_PRESCALER_128;                //      562.5K SDMMC_CLOCK_400KHZ

    SPI_InitStructure.FirstBit = SPI_FB_MSB;
    SPI_InitStructure.CRCPoly= 7;
    SPI_Init(SPI1, &SPI_InitStructure);

    /*!< Enable the SPI1*/
    SPI_Enable(SPI1, ENABLE);

    return SDSPI_ApiRetStatus_Success;
}

SDSPI_ApiRetStatus_Type sdspi_spi_freq(uint32_t hz)
{
                SPI_InitType SPI_InitStructure;
      
                GPIO_SetBits(BOARD_SDSPI_CS_GPIO_PORT, BOARD_SDSPI_CS_GPIO_PIN);
      
                SPI_Enable(SPI1, DISABLE);
      
                /*!< SPI configuration */
    SPI_InitStructure.DataDirection = SPI_DIR_DOUBLELINE_FULLDUPLEX;
    SPI_InitStructure.SpiMode       = SPI_MODE_MASTER;
    SPI_InitStructure.DataLen       = SPI_DATA_SIZE_8BITS;
    SPI_InitStructure.CLKPOL      = SPI_CLKPOL_HIGH;
    SPI_InitStructure.CLKPHA      = SPI_CLKPHA_SECOND_EDGE;
    SPI_InitStructure.NSS         = SPI_NSS_SOFT;

    SPI_InitStructure.FirstBit = SPI_FB_MSB;
    SPI_InitStructure.CRCPoly= 7;
   
               
    switch (hz)
    {
    case SDMMC_CLOCK_400KHZ:
                              SPI_InitStructure.BaudRatePres = SPI_BR_PRESCALER_128;                //      562.5K SDMMC_CLOCK_400KHZ
      break;
    default:
                              SPI_InitStructure.BaudRatePres = SPI_BR_PRESCALER_4;                //      18M SD_CLOCK_25MHZ
      break;
    }
               
                SPI_Init(SPI1, &SPI_InitStructure);
                /*!< Enable the sFLASH_SPI*/
    SPI_Enable(SPI1, ENABLE);
               
    return SDSPI_ApiRetStatus_Success;
}

/* SPI tx. */
void app_spi_putbyte(uint8_t c)
{
    /*!< Loop while DAT register in not emplty */
    while (SPI_I2S_GetStatus(SPI1, SPI_I2S_TE_FLAG) == RESET);

    /*!< Send byte through the SPI1 peripheral */
    SPI_I2S_TransmitData(SPI1, c);
}

/* SPI rx. */
uint8_t app_spi_getbyte(void)
{
    /*!< Wait to receive a byte */
    while (SPI_I2S_GetStatus(SPI1, SPI_I2S_RNE_FLAG) == RESET);

    /*!< Return the byte read from the SPI bus */
    return SPI_I2S_ReceiveData(SPI1);
}

uint8_t spi_xfer(uint8_t tx_dat)
{      
                /*!< Loop while DAT register in not emplty */
    while (SPI_I2S_GetStatus(SPI1, SPI_I2S_TE_FLAG) == RESET)
      ;

    /*!< Send byte through the SPI1 peripheral */
    SPI_I2S_TransmitData(SPI1, tx_dat);

    /*!< Wait to receive a byte */
    while (SPI_I2S_GetStatus(SPI1, SPI_I2S_RNE_FLAG) == RESET)
      ;

    /*!< Return the byte read from the SPI bus */
    return SPI_I2S_ReceiveData(SPI1);
}

SDSPI_ApiRetStatus_Type sdspi_spi_xfer(uint8_t *in, uint8_t *out, uint32_t len)
{
    uint8_t inbuf, outbuf;

                GPIO_ResetBits(BOARD_SDSPI_CS_GPIO_PORT, BOARD_SDSPI_CS_GPIO_PIN);

    for (uint32_t i = 0u; i < len; i++)
    {
      inbuf = (in == NULL) ? SDSPI_DUMMY_DATA: *in++;
      outbuf = spi_xfer(inbuf);
      if (out)
      {
            *out = outbuf;
            out++;
      }
    }

                GPIO_SetBits(BOARD_SDSPI_CS_GPIO_PORT, BOARD_SDSPI_CS_GPIO_PIN);

    return SDSPI_ApiRetStatus_Success;
}

/* EOF. */


FATFS移植因为SD卡都是需要文件系统支持才能进行读写操作,因此,需要移植FATFS文件系统 fatfs 的官方网站: http://elm-chan.org/fsw/ff/00index_e.html我这里使用的是最新的R0.15 (November 6, 2022)版本在工程内添加FATFS的驱动文件添加.c文件添加.h文件路径diskio.c文件是移植的接口文件,里面需要根据实际使用情况实现接口函数disk_status、disk_initialize、disk_read、disk_write、disk_ioctl等函数这些函数的具体操作需要调用SD_SPI中的先关API/*-----------------------------------------------------------------------*/
/* Low level disk I/O module SKELETON for FatFs   (C)ChaN, 2019      */
/*-----------------------------------------------------------------------*/
/* If a working storage control module is available, it should be      */
/* attached to the FatFs via a glue function rather than modifying it.   */
/* This is an example of glue functions to attach various exsisting      */
/* storage control modules to the FatFs module with a defined API.       */
/*-----------------------------------------------------------------------*/

#include "ff.h"                        /* Obtains integer types */
#include "diskio.h"                /* Declarations of disk functions */
#include "sdspi.h"

/* Definitions of physical drive number for each drive */
#define DEV_RAM                0      /* Example: Map Ramdisk to physical drive 0 */
#define DEV_MMC                1      /* Example: Map MMC/SD card to physical drive 1 */
#define DEV_USB                2      /* Example: Map USB MSD to physical drive 2 */

SDSPI_ApiRetStatus_Type app_sdspi_ret;
SDSPI_CardHandler_Type app_sdspi_card;
extern const SDSPI_Interface_Type board_sdspi_if;

/*-----------------------------------------------------------------------*/
/* Get Drive Status                                                      */
/*-----------------------------------------------------------------------*/

DSTATUS disk_status (
      BYTE pdrv                /* Physical drive nmuber to identify the drive */
)
{
      DSTATUS stat;
      int result;

      switch (pdrv) {
      case DEV_RAM :
                //result = RAM_disk_status();

                // translate the reslut code here

                return stat;

      case DEV_MMC :
                //result = MMC_disk_status();
                stat = RES_OK;
                // translate the reslut code here

                return stat;

      case DEV_USB :
                //result = USB_disk_status();

                // translate the reslut code here

                return stat;
      }
      
      return STA_NOINIT;
}



/*-----------------------------------------------------------------------*/
/* Inidialize a Drive                                                    */
/*-----------------------------------------------------------------------*/

DSTATUS disk_initialize (
      BYTE pdrv                              /* Physical drive nmuber to identify the drive */
)
{
      DSTATUS stat;
      //int result;

      switch (pdrv) {
      case DEV_RAM :
                //result = RAM_disk_initialize();

                // translate the reslut code here

                return stat;

      case DEV_MMC :
                //result = MMC_disk_initialize();

                if(!SDSPI_Init(&app_sdspi_card, &board_sdspi_if)){
                        stat = RES_OK;
                }else{
                        stat = STA_NOINIT;
                }
                // translate the reslut code here

                return stat;

      case DEV_USB :
                //result = USB_disk_initialize();

                // translate the reslut code here

                return stat;
      }
      return STA_NOINIT;
}



/*-----------------------------------------------------------------------*/
/* Read Sector(s)                                                      */
/*-----------------------------------------------------------------------*/

DRESULT disk_read (
      BYTE pdrv,                /* Physical drive nmuber to identify the drive */
      BYTE *buff,                /* Data buffer to store read data */
      LBA_t sector,      /* Start sector in LBA */
      UINT count                /* Number of sectors to read */
)
{
      DRESULT res;
      //int result;
      uint8_t i;

      switch (pdrv) {
      case DEV_RAM :
                // translate the arguments here

                //result = RAM_disk_read(buff, sector, count);

                // translate the reslut code here

                return res;

      case DEV_MMC :
                // translate the arguments here
                        if(!SDSPI_ReadBlocks(&app_sdspi_card,buff, sector, count))
                        {
                              res = RES_OK;
                        }else{
                              res = RES_ERROR;
                        }
                //result = MMC_disk_read(buff, sector, count);
               

                // translate the reslut code here

                return res;

      case DEV_USB :
                // translate the arguments here

                //result = USB_disk_read(buff, sector, count);

                // translate the reslut code here

                return res;
      }

      return RES_PARERR;
}



/*-----------------------------------------------------------------------*/
/* Write Sector(s)                                                       */
/*-----------------------------------------------------------------------*/

#if FF_FS_READONLY == 0

DRESULT disk_write (
      BYTE pdrv,                        /* Physical drive nmuber to identify the drive */
      const BYTE *buff,      /* Data to be written */
      LBA_t sector,                /* Start sector in LBA */
      UINT count                        /* Number of sectors to write */
)
{
      DRESULT res;
      //int result;

      switch (pdrv) {
      case DEV_RAM :
                // translate the arguments here

                //result = RAM_disk_write(buff, sector, count);

                // translate the reslut code here

                return res;

      case DEV_MMC :
                // translate the arguments here

                //result = MMC_disk_write(buff, sector, count);
                if(!SDSPI_WriteBlocks(&app_sdspi_card,(uint8_t *)buff, sector, count))
                {
                        res = RES_OK;
                }else{
                        res = RES_ERROR;
                }

                // translate the reslut code here

                return res;

      case DEV_USB :
                // translate the arguments here

                //result = USB_disk_write(buff, sector, count);

                // translate the reslut code here

                return res;
      }

      return RES_PARERR;
}

#endif


/*-----------------------------------------------------------------------*/
/* Miscellaneous Functions                                             */
/*-----------------------------------------------------------------------*/

DRESULT disk_ioctl (
      BYTE pdrv,                /* Physical drive nmuber (0..) */
      BYTE cmd,                /* Control code */
      void *buff                /* Buffer to send/receive control data */
)
{
      DRESULT res;
      int result;

      switch (pdrv) {
      case DEV_RAM :

                // Process of the command for the RAM drive

                return res;

      case DEV_MMC :

                // Process of the command for the MMC/SD card
                switch(cmd)
                {
                        case GET_SECTOR_COUNT:
         *(DWORD *)buff = app_sdspi_card.blockCount;
         res = RES_OK;
         break;

      case GET_BLOCK_SIZE:
         *(DWORD *)buff = SDSPI_DEFAULT_BLOCK_SIZE;
         res = RES_OK;
         break;
                }

                return res;

      case DEV_USB :

                // Process of the command the USB drive

                return res;
      }

      return RES_PARERR;
}


FATFS定义了RAM MMC(SD/TF) USB设备的盘符,这些盘符在操作API时会用到/* Definitions of physical drive number for each drive */
#define DEV_RAM                0      /* Example: Map Ramdisk to physical drive 0 */
#define DEV_MMC                1      /* Example: Map MMC/SD card to physical drive 1 */
#define DEV_USB                2      /* Example: Map USB MSD to physical drive 2 */
ffconf.h内是FATFS的配置文件,相关配置项需要根据自己的实际情况进行配置/*---------------------------------------------------------------------------/
/Configurations of FatFs Module
/---------------------------------------------------------------------------*/

#define FFCONF_DEF      80286      /* Revision ID */

/*---------------------------------------------------------------------------/
/ Function Configurations
/---------------------------------------------------------------------------*/

#define FF_FS_READONLY      0
/* This option switches read-only configuration. (0:Read/Write or 1:Read-only)
/Read-only configuration removes writing API functions, f_write(), f_sync(),
/f_unlink(), f_mkdir(), f_chmod(), f_rename(), f_truncate(), f_getfree()
/and optional writing functions as well. */


#define FF_FS_MINIMIZE      0
/* This option defines minimization level to remove some basic API functions.
/
/   0: Basic functions are fully enabled.
/   1: f_stat(), f_getfree(), f_unlink(), f_mkdir(), f_truncate() and f_rename()
/      are removed.
/   2: f_opendir(), f_readdir() and f_closedir() are removed in addition to 1.
/   3: f_lseek() function is removed in addition to 2. */


#define FF_USE_FIND                0
/* This option switches filtered directory read functions, f_findfirst() and
/f_findnext(). (0:Disable, 1:Enable 2:Enable with matching altname[] too) */


#define FF_USE_MKFS                1
/* This option switches f_mkfs() function. (0:Disable or 1:Enable) */


#define FF_USE_FASTSEEK      0
/* This option switches fast seek function. (0:Disable or 1:Enable) */


#define FF_USE_EXPAND      0
/* This option switches f_expand function. (0:Disable or 1:Enable) */


#define FF_USE_CHMOD      0
/* This option switches attribute manipulation functions, f_chmod() and f_utime().
/(0:Disable or 1:Enable) Also FF_FS_READONLY needs to be 0 to enable this option. */


#define FF_USE_LABEL      0
/* This option switches volume label functions, f_getlabel() and f_setlabel().
/(0:Disable or 1:Enable) */


#define FF_USE_FORWARD      0
/* This option switches f_forward() function. (0:Disable or 1:Enable) */


#define FF_USE_STRFUNC      1
#define FF_PRINT_LLI                0
#define FF_PRINT_FLOAT      0
#define FF_STRF_ENCODE      0
/* FF_USE_STRFUNC switches string functions, f_gets(), f_putc(), f_puts() and
/f_printf().
/
/   0: Disable. FF_PRINT_LLI, FF_PRINT_FLOAT and FF_STRF_ENCODE have no effect.
/   1: Enable without LF-CRLF conversion.
/   2: Enable with LF-CRLF conversion.
/
/FF_PRINT_LLI = 1 makes f_printf() support long long argument and FF_PRINT_FLOAT = 1/2
/makes f_printf() support floating point argument. These features want C99 or later.
/When FF_LFN_UNICODE >= 1 with LFN enabled, string functions convert the character
/encoding in it. FF_STRF_ENCODE selects assumption of character encoding ON THE FILE
/to be read/written via those functions.
/
/   0: ANSI/OEM in current CP
/   1: Unicode in UTF-16LE
/   2: Unicode in UTF-16BE
/   3: Unicode in UTF-8
*/


/*---------------------------------------------------------------------------/
/ Locale and Namespace Configurations
/---------------------------------------------------------------------------*/

#define FF_CODE_PAGE      932
/* This option specifies the OEM code page to be used on the target system.
/Incorrect code page setting can cause a file open failure.
/
/   437 - U.S.
/   720 - Arabic
/   737 - Greek
/   771 - KBL
/   775 - Baltic
/   850 - Latin 1
/   852 - Latin 2
/   855 - Cyrillic
/   857 - Turkish
/   860 - Portuguese
/   861 - Icelandic
/   862 - Hebrew
/   863 - Canadian French
/   864 - Arabic
/   865 - Nordic
/   866 - Russian
/   869 - Greek 2
/   932 - Japanese (DBCS)
/   936 - Simplified Chinese (DBCS)
/   949 - Korean (DBCS)
/   950 - Traditional Chinese (DBCS)
/   0 - Include all code pages above and configured by f_setcp()
*/


#define FF_USE_LFN                0
#define FF_MAX_LFN                255
/* The FF_USE_LFN switches the support for LFN (long file name).
/
/   0: Disable LFN. FF_MAX_LFN has no effect.
/   1: Enable LFN with staticworking buffer on the BSS. Always NOT thread-safe.
/   2: Enable LFN with dynamic working buffer on the STACK.
/   3: Enable LFN with dynamic working buffer on the HEAP.
/
/To enable the LFN, ffunicode.c needs to be added to the project. The LFN function
/requiers certain internal working buffer occupies (FF_MAX_LFN + 1) * 2 bytes and
/additional (FF_MAX_LFN + 44) / 15 * 32 bytes when exFAT is enabled.
/The FF_MAX_LFN defines size of the working buffer in UTF-16 code unit and it can
/be in range of 12 to 255. It is recommended to be set it 255 to fully support LFN
/specification.
/When use stack for the working buffer, take care on stack overflow. When use heap
/memory for the working buffer, memory management functions, ff_memalloc() and
/ff_memfree() exemplified in ffsystem.c, need to be added to the project. */


#define FF_LFN_UNICODE      0
/* This option switches the character encoding on the API when LFN is enabled.
/
/   0: ANSI/OEM in current CP (TCHAR = char)
/   1: Unicode in UTF-16 (TCHAR = WCHAR)
/   2: Unicode in UTF-8 (TCHAR = char)
/   3: Unicode in UTF-32 (TCHAR = DWORD)
/
/Also behavior of string I/O functions will be affected by this option.
/When LFN is not enabled, this option has no effect. */


#define FF_LFN_BUF                255
#define FF_SFN_BUF                12
/* This set of options defines size of file name members in the FILINFO structure
/which is used to read out directory items. These values should be suffcient for
/the file names to read. The maximum possible length of the read file name depends
/on character encoding. When LFN is not enabled, these options have no effect. */


#define FF_FS_RPATH                0
/* This option configures support for relative path.
/
/   0: Disable relative path and remove related functions.
/   1: Enable relative path. f_chdir() and f_chdrive() are available.
/   2: f_getcwd() function is available in addition to 1.
*/


/*---------------------------------------------------------------------------/
/ Drive/Volume Configurations
/---------------------------------------------------------------------------*/

#define FF_VOLUMES                2
/* Number of volumes (logical drives) to be used. (1-10) */


#define FF_STR_VOLUME_ID      0
#define FF_VOLUME_STRS                "RAM","NAND","CF","SD","SD2","USB","USB2","USB3"
/* FF_STR_VOLUME_ID switches support for volume ID in arbitrary strings.
/When FF_STR_VOLUME_ID is set to 1 or 2, arbitrary strings can be used as drive
/number in the path name. FF_VOLUME_STRS defines the volume ID strings for each
/logical drives. Number of items must not be less than FF_VOLUMES. Valid
/characters for the volume ID strings are A-Z, a-z and 0-9, however, they are
/compared in case-insensitive. If FF_STR_VOLUME_ID >= 1 and FF_VOLUME_STRS is
/not defined, a user defined volume string table is needed as:
/
/const char* VolumeStr = {"ram","flash","sd","usb",...
*/


#define FF_MULTI_PARTITION      0
/* This option switches support for multiple volumes on the physical drive.
/By default (0), each logical drive number is bound to the same physical drive
/number and only an FAT volume found on the physical drive will be mounted.
/When this function is enabled (1), each logical drive number can be bound to
/arbitrary physical drive and partition listed in the VolToPart[]. Also f_fdisk()
/function will be available. */


#define FF_MIN_SS                512
#define FF_MAX_SS                512
/* This set of options configures the range of sector size to be supported. (512,
/1024, 2048 or 4096) Always set both 512 for most systems, generic memory card and
/harddisk, but a larger value may be required for on-board flash memory and some
/type of optical media. When FF_MAX_SS is larger than FF_MIN_SS, FatFs is configured
/for variable sector size mode and disk_ioctl() function needs to implement
/GET_SECTOR_SIZE command. */


#define FF_LBA64                0
/* This option switches support for 64-bit LBA. (0:Disable or 1:Enable)
/To enable the 64-bit LBA, also exFAT needs to be enabled. (FF_FS_EXFAT == 1) */


#define FF_MIN_GPT                0x10000000
/* Minimum number of sectors to switch GPT as partitioning format in f_mkfs and
/f_fdisk function. 0x100000000 max. This option has no effect when FF_LBA64 == 0. */


#define FF_USE_TRIM                0
/* This option switches support for ATA-TRIM. (0:Disable or 1:Enable)
/To enable Trim function, also CTRL_TRIM command should be implemented to the
/disk_ioctl() function. */



/*---------------------------------------------------------------------------/
/ System Configurations
/---------------------------------------------------------------------------*/

#define FF_FS_TINY                0
/* This option switches tiny buffer configuration. (0:Normal or 1:Tiny)
/At the tiny configuration, size of file object (FIL) is shrinked FF_MAX_SS bytes.
/Instead of private sector buffer eliminated from the file object, common sector
/buffer in the filesystem object (FATFS) is used for the file data transfer. */


#define FF_FS_EXFAT                0
/* This option switches support for exFAT filesystem. (0:Disable or 1:Enable)
/To enable exFAT, also LFN needs to be enabled. (FF_USE_LFN >= 1)
/Note that enabling exFAT discards ANSI C (C89) compatibility. */


#define FF_FS_NORTC                1
#define FF_NORTC_MON      1
#define FF_NORTC_MDAY      1
#define FF_NORTC_YEAR      2022
/* The option FF_FS_NORTC switches timestamp feature. If the system does not have
/an RTC or valid timestamp is not needed, set FF_FS_NORTC = 1 to disable the
/timestamp feature. Every object modified by FatFs will have a fixed timestamp
/defined by FF_NORTC_MON, FF_NORTC_MDAY and FF_NORTC_YEAR in local time.
/To enable timestamp function (FF_FS_NORTC = 0), get_fattime() function need to be
/added to the project to read current time form real-time clock. FF_NORTC_MON,
/FF_NORTC_MDAY and FF_NORTC_YEAR have no effect.
/These options have no effect in read-only configuration (FF_FS_READONLY = 1). */


#define FF_FS_NOFSINFO      0
/* If you need to know correct free space on the FAT32 volume, set bit 0 of this
/option, and f_getfree() function at the first time after volume mount will force
/a full FAT scan. Bit 1 controls the use of last allocated cluster number.
/
/bit0=0: Use free cluster count in the FSINFO if available.
/bit0=1: Do not trust free cluster count in the FSINFO.
/bit1=0: Use last allocated cluster number in the FSINFO if available.
/bit1=1: Do not trust last allocated cluster number in the FSINFO.
*/


#define FF_FS_LOCK                0
/* The option FF_FS_LOCK switches file lock function to control duplicated file open
/and illegal operation to open objects. This option must be 0 when FF_FS_READONLY
/is 1.
/
/0:Disable file lock function. To avoid volume corruption, application program
/      should avoid illegal open, remove and rename to the open objects.
/>0: Enable file lock function. The value defines how many files/sub-directories
/      can be opened simultaneously under file lock control. Note that the file
/      lock control is independent of re-entrancy. */


#define FF_FS_REENTRANT      0
#define FF_FS_TIMEOUT      1000
/* The option FF_FS_REENTRANT switches the re-entrancy (thread safe) of the FatFs
/module itself. Note that regardless of this option, file access to different
/volume is always re-entrant and volume control functions, f_mount(), f_mkfs()
/and f_fdisk() function, are always not re-entrant. Only file/directory access
/to the same volume is under control of this featuer.
/
/   0: Disable re-entrancy. FF_FS_TIMEOUT have no effect.
/   1: Enable re-entrancy. Also user provided synchronization handlers,
/      ff_mutex_create(), ff_mutex_delete(), ff_mutex_take() and ff_mutex_give()
/      function, must be added to the project. Samples are available in ffsystem.c.
/
/The FF_FS_TIMEOUT defines timeout period in unit of O/S time tick.
*/



/*--- End of configuration options ---*/

片内FLASH_IAP移植此部分直接使用原厂提供的IAP函数即可,将文件添加到工程添加.c文件添加.h文件路径#include <stdio.h>
#include "iap.h"
#include "string.h"

iapfun jump2app;
uint8_t uart_receiveBIN_ok;

uint8_t pages_number = 0;
uint32_t ready_write_addr = 0;

uint8_t flash_buf;
extern uint8_t receive_app_done;
extern void IAP_UPDATE_APP(void);

/**================================================================
                读取Flash
================================================================*/
uint32_t FLASH_ReadWord(uint32_t address)
{
return *(__IO uint32_t*)address;
}
/**================================================================
                APP 跳转
                appxaddr:用户代码起始地址.
================================================================*/
void iap_load_app(u32 appxaddr)
{
      if(((*(vu32*)appxaddr)&0x0FFFFFFF) < 1024*512)                // 检查栈顶地址是否合法.
      {
                jump2app = (iapfun)*(vu32*)(appxaddr+4);                              
                __set_MSP(*(vu32*)appxaddr);                                                // 初始化堆栈指针
                jump2app();                                                                              // 跳转到APP.
      }
}               
/**================================================================
================================================================*/
int32_t app_flag_write(uint32_t data ,uint32_t start_add)
{
      FLASH_Unlock();
      //
      FLASH_EraseOnePage(start_add);                        //写之前先擦一遍,每次擦2K
      if (FLASH_COMPL != FLASH_ProgramWord(start_add, data))                //写
      {
                FLASH_Lock();
                //printf("flash write fail! \r\n");
                return 1;
      }
      FLASH_Lock();
    return 0;
}
/**================================================================
================================================================*/
#define FLASH_PAGE_SIZE               2048                                 

/**
* @brief
* @param void
* @return
* - `SUCCESS: 表示操作成功
* - 其它值表示出错
*/
int32_t app_flash_write(uint32_t *data ,uint32_t Flash_address)
{
    uint32_t i;
      uint32_t start_add;
      start_add = Flash_address;
               
      FLASH_Unlock();
      //
      for(i = 0;i<FLASH_PAGE_SIZE/FLASH_PAGE_SIZE;i++)
      {
                FLASH_EraseOnePage(start_add+i*FLASH_PAGE_SIZE);                        //写之前先擦一遍,每次擦2K
      }
      //
      for(i=0;i<FLASH_PAGE_SIZE/4 ;i++)
      {
                if (FLASH_COMPL != FLASH_ProgramWord(start_add+i*4, data))                //写
                {
                        FLASH_Lock();
                        //printf("flash write fail! \r\n");
//                        receive_app_done = 0;
                        return 1;
                }
      }
      FLASH_Lock();
    return 0;
}
/**================================================================
                //升级APP
================================================================*/
void IAP_UPDATE_APP(void)
{
      ready_write_addr = FLASH_APP_BASE_ADDR + pages_number*2048;
      //
      while(app_flash_write((uint32_t *)flash_buf , ready_write_addr));                //IAP每次升级2K
      //
      memset(flash_buf,0x00,2048);
      pages_number++;

}

至此,软件包的移植工作就都完成了,接下来实现具体的逻辑操作。2.2   升级流程说明本实例仅实现基础功能,在实际使用过程中需要根据实际情况进行修改整体流程如下:整个方案流程如下1   MCU启动2      bootloader判断升级标志状态,标志不为0x12345678,进入步骤3,标志为0x12345678,进行跳转至app,进入步骤73      bootloader初始化外设4      bootloader初始化文件系统5      bootloader检查app升级文件是否存在,升级文件存在,输出提示信息,并等待升级命令。未收到升级命令则正常运行。6      bootloader收到升级命令,读取SD卡内升级文件写入app区,写入完成,跳转至APP7      app判断升级标志状态,标志不为0x12345678,代表第一次进入app,需要将升级标志写为0x12345678。标志为0x12345678,代表从bootloader正常启动。8      app初始化外设9      app初始化文件系统10    app检查app升级文件是否存在,升级文件存在,输出提示信息,并等待升级命令11    app收到升级命令,需要先擦除升级标志,并进行系统复位,回到步骤1。未收到升级命令则正常运行。
我的这个SD_IAP实例因为BootLoader和application功能都十分类似,因此使用一个工程下的不同项目进行维护在不同点使用宏定义进行编译选择。在app内添加SD_SPI_APP宏定义作为编译开关。不同项目输出的bin文件路径也分别进行了设置,防止出现错误这里重点说一个MDK的小技巧,在进入bootloader和application后都要进行中断向量的重新映射才能使程序正常运行,例如:一般的做法都是在bootloader和application使用不同的宏定义区实现,比如这种方式在修改时有时会遗忘,比较麻烦,MDK可采用下图的方式修改,一劳永逸。不用再为不同起始地址配置不同的宏定义,一切都由MDK根据FLASH地址的配置自动设置。void System_Init(void)
{
    /* 设置中断向量表后,开启总中断 */
    extern int Image$ER_IROM1$Base;
    __disable_irq();
    SCB->VTOR = (uint32_t)&Image$ER_IROM1$Base;
    __enable_irq();
}
3.   升级兼容性测试为了测试此升级程序的兼容性,我准备了SD卡(512MB)TF卡(16GB)MMC卡(1GB)分别使用不同的文件格式进行了测试SD卡(512MB)FAT格式,升级正常SD卡(512MB)FAT32格式,升级正常SD卡(512MB)exFAT格式,升级失败TF卡(16GB),FAT32格式,升级正常,不支持FAT,没测试TF卡(16GB),exFAT格式,升级失败MMC卡(1GB)任何格式升级都失败
失败原因应该是文件系统的配置有问题,理论上3中卡都可以支持,如需对各种格式的卡进行兼容需要仔细研究ffconf.h内的配置项,根据需求进行配置。
源码:视频:https://www.bilibili.com/video/BV1cL411D797/

页: [1]
查看完整版本: 【开源活动】-基于国民N32G45x的SD卡IAP升级开发