本帖最后由 6552918 于 2023-4-3 09:35 编辑
#申请原创# #技术资源#@安小芯
测试条件 | | | | | | N32G457XVL-STB V1.1
SD卡读写模块-SPI接口 SD卡、TF卡.MMC卡 | | |
1. 硬件部分说明1.1 硬件说明使用N32G457XVL-STB V1.1开发板,因为板子上并没有集成SD卡槽,所有需要扩展一个SD卡槽,SD卡支持两种驱动模式,一种是SPI驱动,另一种是SDIO驱动,因为我手上只有SPI接口的SD卡模块,所以本例程使用的是SPI驱动SD卡进行的演示。 SD卡读写模块-SPI接口 模块 SD卡读写模块-SPI接口 模块 原理图 为了做兼容性测试 我准备了3种卡有SD卡 TF卡 MMC卡 1.2 FLASH说明N32G457的FLASH有256个页,每个页大小为2KB,需要根据使用情况对FLASH进行划分。 本例程FLASH划分: 2. 软件部分说明首先要准备一个编译无错误并运行正常的工程文件(建议使用厂家例程库里的工程,我这里使用的是uart的printf工程) 2.1 软件包移植SD_SPI驱动移植 在工程内添加SD_SPI的驱动文件 添加.c文件 添加.h头文件路径 sdspi_port.c文件是移植的接口文件,里面需要根据实际使用情况实现接口函数,包含SPI初始化、SPI时钟速率变更及SPI数据收发函数,我这里使用的是SPI1 相关接口函数如下:
/*
* Copyright 2022 MindMotion Microelectronics Co., Ltd.
* All rights reserved.
*
* SPDX-License-Identifier: BSD-3-Clause
*/
#include <stdio.h>
#include <stdint.h>
#include "sdspi.h"
#include "n32g45x_spi.h"
/* pins:
* tx : PA7/SPI_MOSI
* rx : PA6/SPI0_MISO
* clk: PA5/SPI1_SCK
* cs : PA4/SPI0_PCS0
*/
#define BOARD_SDSPI_TX_GPIO_PORT GPIOA
#define BOARD_SDSPI_TX_GPIO_PIN GPIO_PIN_7
#define BOARD_SDSPI_RX_GPIO_PORT GPIOA
#define BOARD_SDSPI_RX_GPIO_PIN GPIO_PIN_6
#define BOARD_SDSPI_CLK_GPIO_PORT GPIOA
#define BOARD_SDSPI_CLK_GPIO_PIN GPIO_PIN_5
#define BOARD_SDSPI_CS_GPIO_PORT GPIOA
#define BOARD_SDSPI_CS_GPIO_PIN GPIO_PIN_4
SDSPI_ApiRetStatus_Type sdspi_spi_init(void);
SDSPI_ApiRetStatus_Type sdspi_spi_freq(uint32_t hz);
SDSPI_ApiRetStatus_Type sdspi_spi_xfer(uint8_t *in, uint8_t *out, uint32_t len);
const SDSPI_Interface_Type board_sdspi_if =
{
.baudrate = 1000000u, /* 1mhz. */
.spi_init = sdspi_spi_init,
.spi_freq = sdspi_spi_freq,
.spi_xfer = sdspi_spi_xfer
};
uint32_t board_sdspi_delay_count;
static void board_sdspi_delay(uint32_t count)
{
for (uint32_t i = count; i > 0u; i--)
{
__NOP();
}
}
SDSPI_ApiRetStatus_Type sdspi_spi_init(void)
{
SPI_InitType SPI_InitStructure;
GPIO_SetBits(BOARD_SDSPI_CS_GPIO_PORT, BOARD_SDSPI_CS_GPIO_PIN);
/*!< SPI configuration */
SPI_InitStructure.DataDirection = SPI_DIR_DOUBLELINE_FULLDUPLEX;
SPI_InitStructure.SpiMode = SPI_MODE_MASTER;
SPI_InitStructure.DataLen = SPI_DATA_SIZE_8BITS;
SPI_InitStructure.CLKPOL = SPI_CLKPOL_HIGH;
SPI_InitStructure.CLKPHA = SPI_CLKPHA_SECOND_EDGE;
SPI_InitStructure.NSS = SPI_NSS_SOFT;
SPI_InitStructure.BaudRatePres = SPI_BR_PRESCALER_128; // 562.5K SDMMC_CLOCK_400KHZ
SPI_InitStructure.FirstBit = SPI_FB_MSB;
SPI_InitStructure.CRCPoly = 7;
SPI_Init(SPI1, &SPI_InitStructure);
/*!< Enable the SPI1 */
SPI_Enable(SPI1, ENABLE);
return SDSPI_ApiRetStatus_Success;
}
SDSPI_ApiRetStatus_Type sdspi_spi_freq(uint32_t hz)
{
SPI_InitType SPI_InitStructure;
GPIO_SetBits(BOARD_SDSPI_CS_GPIO_PORT, BOARD_SDSPI_CS_GPIO_PIN);
SPI_Enable(SPI1, DISABLE);
/*!< SPI configuration */
SPI_InitStructure.DataDirection = SPI_DIR_DOUBLELINE_FULLDUPLEX;
SPI_InitStructure.SpiMode = SPI_MODE_MASTER;
SPI_InitStructure.DataLen = SPI_DATA_SIZE_8BITS;
SPI_InitStructure.CLKPOL = SPI_CLKPOL_HIGH;
SPI_InitStructure.CLKPHA = SPI_CLKPHA_SECOND_EDGE;
SPI_InitStructure.NSS = SPI_NSS_SOFT;
SPI_InitStructure.FirstBit = SPI_FB_MSB;
SPI_InitStructure.CRCPoly = 7;
switch (hz)
{
case SDMMC_CLOCK_400KHZ:
SPI_InitStructure.BaudRatePres = SPI_BR_PRESCALER_128; // 562.5K SDMMC_CLOCK_400KHZ
break;
default:
SPI_InitStructure.BaudRatePres = SPI_BR_PRESCALER_4; // 18M SD_CLOCK_25MHZ
break;
}
SPI_Init(SPI1, &SPI_InitStructure);
/*!< Enable the sFLASH_SPI */
SPI_Enable(SPI1, ENABLE);
return SDSPI_ApiRetStatus_Success;
}
/* SPI tx. */
void app_spi_putbyte(uint8_t c)
{
/*!< Loop while DAT register in not emplty */
while (SPI_I2S_GetStatus(SPI1, SPI_I2S_TE_FLAG) == RESET);
/*!< Send byte through the SPI1 peripheral */
SPI_I2S_TransmitData(SPI1, c);
}
/* SPI rx. */
uint8_t app_spi_getbyte(void)
{
/*!< Wait to receive a byte */
while (SPI_I2S_GetStatus(SPI1, SPI_I2S_RNE_FLAG) == RESET);
/*!< Return the byte read from the SPI bus */
return SPI_I2S_ReceiveData(SPI1);
}
uint8_t spi_xfer(uint8_t tx_dat)
{
/*!< Loop while DAT register in not emplty */
while (SPI_I2S_GetStatus(SPI1, SPI_I2S_TE_FLAG) == RESET)
;
/*!< Send byte through the SPI1 peripheral */
SPI_I2S_TransmitData(SPI1, tx_dat);
/*!< Wait to receive a byte */
while (SPI_I2S_GetStatus(SPI1, SPI_I2S_RNE_FLAG) == RESET)
;
/*!< Return the byte read from the SPI bus */
return SPI_I2S_ReceiveData(SPI1);
}
SDSPI_ApiRetStatus_Type sdspi_spi_xfer(uint8_t *in, uint8_t *out, uint32_t len)
{
uint8_t inbuf, outbuf;
GPIO_ResetBits(BOARD_SDSPI_CS_GPIO_PORT, BOARD_SDSPI_CS_GPIO_PIN);
for (uint32_t i = 0u; i < len; i++)
{
inbuf = (in == NULL) ? SDSPI_DUMMY_DATA: *in++;
outbuf = spi_xfer(inbuf);
if (out)
{
*out = outbuf;
out++;
}
}
GPIO_SetBits(BOARD_SDSPI_CS_GPIO_PORT, BOARD_SDSPI_CS_GPIO_PIN);
return SDSPI_ApiRetStatus_Success;
}
/* EOF. */
FATFS移植 因为SD卡都是需要文件系统支持才能进行读写操作,因此,需要移植FATFS文件系统 fatfs 的官方网站: http://elm-chan.org/fsw/ff/00index_e.html 我这里使用的是最新的R0.15 (November 6, 2022)版本 在工程内添加FATFS的驱动文件 添加.c文件 添加.h文件路径 diskio.c文件是移植的接口文件,里面需要根据实际使用情况实现接口函数 disk_status、disk_initialize、disk_read、disk_write、disk_ioctl等函数 这些函数的具体操作需要调用SD_SPI中的先关API
/*-----------------------------------------------------------------------*/
/* Low level disk I/O module SKELETON for FatFs (C)ChaN, 2019 */
/*-----------------------------------------------------------------------*/
/* If a working storage control module is available, it should be */
/* attached to the FatFs via a glue function rather than modifying it. */
/* This is an example of glue functions to attach various exsisting */
/* storage control modules to the FatFs module with a defined API. */
/*-----------------------------------------------------------------------*/
#include "ff.h" /* Obtains integer types */
#include "diskio.h" /* Declarations of disk functions */
#include "sdspi.h"
/* Definitions of physical drive number for each drive */
#define DEV_RAM 0 /* Example: Map Ramdisk to physical drive 0 */
#define DEV_MMC 1 /* Example: Map MMC/SD card to physical drive 1 */
#define DEV_USB 2 /* Example: Map USB MSD to physical drive 2 */
SDSPI_ApiRetStatus_Type app_sdspi_ret;
SDSPI_CardHandler_Type app_sdspi_card;
extern const SDSPI_Interface_Type board_sdspi_if;
/*-----------------------------------------------------------------------*/
/* Get Drive Status */
/*-----------------------------------------------------------------------*/
DSTATUS disk_status (
BYTE pdrv /* Physical drive nmuber to identify the drive */
)
{
DSTATUS stat;
int result;
switch (pdrv) {
case DEV_RAM :
//result = RAM_disk_status();
// translate the reslut code here
return stat;
case DEV_MMC :
//result = MMC_disk_status();
stat = RES_OK;
// translate the reslut code here
return stat;
case DEV_USB :
//result = USB_disk_status();
// translate the reslut code here
return stat;
}
return STA_NOINIT;
}
/*-----------------------------------------------------------------------*/
/* Inidialize a Drive */
/*-----------------------------------------------------------------------*/
DSTATUS disk_initialize (
BYTE pdrv /* Physical drive nmuber to identify the drive */
)
{
DSTATUS stat;
//int result;
switch (pdrv) {
case DEV_RAM :
//result = RAM_disk_initialize();
// translate the reslut code here
return stat;
case DEV_MMC :
//result = MMC_disk_initialize();
if(!SDSPI_Init(&app_sdspi_card, &board_sdspi_if)){
stat = RES_OK;
}else{
stat = STA_NOINIT;
}
// translate the reslut code here
return stat;
case DEV_USB :
//result = USB_disk_initialize();
// translate the reslut code here
return stat;
}
return STA_NOINIT;
}
/*-----------------------------------------------------------------------*/
/* Read Sector(s) */
/*-----------------------------------------------------------------------*/
DRESULT disk_read (
BYTE pdrv, /* Physical drive nmuber to identify the drive */
BYTE *buff, /* Data buffer to store read data */
LBA_t sector, /* Start sector in LBA */
UINT count /* Number of sectors to read */
)
{
DRESULT res;
//int result;
uint8_t i;
switch (pdrv) {
case DEV_RAM :
// translate the arguments here
//result = RAM_disk_read(buff, sector, count);
// translate the reslut code here
return res;
case DEV_MMC :
// translate the arguments here
if(!SDSPI_ReadBlocks(&app_sdspi_card,buff, sector, count))
{
res = RES_OK;
}else{
res = RES_ERROR;
}
//result = MMC_disk_read(buff, sector, count);
// translate the reslut code here
return res;
case DEV_USB :
// translate the arguments here
//result = USB_disk_read(buff, sector, count);
// translate the reslut code here
return res;
}
return RES_PARERR;
}
/*-----------------------------------------------------------------------*/
/* Write Sector(s) */
/*-----------------------------------------------------------------------*/
#if FF_FS_READONLY == 0
DRESULT disk_write (
BYTE pdrv, /* Physical drive nmuber to identify the drive */
const BYTE *buff, /* Data to be written */
LBA_t sector, /* Start sector in LBA */
UINT count /* Number of sectors to write */
)
{
DRESULT res;
//int result;
switch (pdrv) {
case DEV_RAM :
// translate the arguments here
//result = RAM_disk_write(buff, sector, count);
// translate the reslut code here
return res;
case DEV_MMC :
// translate the arguments here
//result = MMC_disk_write(buff, sector, count);
if(!SDSPI_WriteBlocks(&app_sdspi_card,(uint8_t *)buff, sector, count))
{
res = RES_OK;
}else{
res = RES_ERROR;
}
// translate the reslut code here
return res;
case DEV_USB :
// translate the arguments here
//result = USB_disk_write(buff, sector, count);
// translate the reslut code here
return res;
}
return RES_PARERR;
}
#endif
/*-----------------------------------------------------------------------*/
/* Miscellaneous Functions */
/*-----------------------------------------------------------------------*/
DRESULT disk_ioctl (
BYTE pdrv, /* Physical drive nmuber (0..) */
BYTE cmd, /* Control code */
void *buff /* Buffer to send/receive control data */
)
{
DRESULT res;
int result;
switch (pdrv) {
case DEV_RAM :
// Process of the command for the RAM drive
return res;
case DEV_MMC :
// Process of the command for the MMC/SD card
switch(cmd)
{
case GET_SECTOR_COUNT:
*(DWORD *)buff = app_sdspi_card.blockCount;
res = RES_OK;
break;
case GET_BLOCK_SIZE:
*(DWORD *)buff = SDSPI_DEFAULT_BLOCK_SIZE;
res = RES_OK;
break;
}
return res;
case DEV_USB :
// Process of the command the USB drive
return res;
}
return RES_PARERR;
}
FATFS定义了RAM MMC(SD/TF) USB设备的盘符,这些盘符在操作API时会用到 /* Definitions of physical drive number for each drive */
#define DEV_RAM 0 /* Example: Map Ramdisk to physical drive 0 */
#define DEV_MMC 1 /* Example: Map MMC/SD card to physical drive 1 */
#define DEV_USB 2 /* Example: Map USB MSD to physical drive 2 */
ffconf.h内是FATFS的配置文件,相关配置项需要根据自己的实际情况进行配置
/*---------------------------------------------------------------------------/
/ Configurations of FatFs Module
/---------------------------------------------------------------------------*/
#define FFCONF_DEF 80286 /* Revision ID */
/*---------------------------------------------------------------------------/
/ Function Configurations
/---------------------------------------------------------------------------*/
#define FF_FS_READONLY 0
/* This option switches read-only configuration. (0:Read/Write or 1:Read-only)
/ Read-only configuration removes writing API functions, f_write(), f_sync(),
/ f_unlink(), f_mkdir(), f_chmod(), f_rename(), f_truncate(), f_getfree()
/ and optional writing functions as well. */
#define FF_FS_MINIMIZE 0
/* This option defines minimization level to remove some basic API functions.
/
/ 0: Basic functions are fully enabled.
/ 1: f_stat(), f_getfree(), f_unlink(), f_mkdir(), f_truncate() and f_rename()
/ are removed.
/ 2: f_opendir(), f_readdir() and f_closedir() are removed in addition to 1.
/ 3: f_lseek() function is removed in addition to 2. */
#define FF_USE_FIND 0
/* This option switches filtered directory read functions, f_findfirst() and
/ f_findnext(). (0:Disable, 1:Enable 2:Enable with matching altname[] too) */
#define FF_USE_MKFS 1
/* This option switches f_mkfs() function. (0:Disable or 1:Enable) */
#define FF_USE_FASTSEEK 0
/* This option switches fast seek function. (0:Disable or 1:Enable) */
#define FF_USE_EXPAND 0
/* This option switches f_expand function. (0:Disable or 1:Enable) */
#define FF_USE_CHMOD 0
/* This option switches attribute manipulation functions, f_chmod() and f_utime().
/ (0:Disable or 1:Enable) Also FF_FS_READONLY needs to be 0 to enable this option. */
#define FF_USE_LABEL 0
/* This option switches volume label functions, f_getlabel() and f_setlabel().
/ (0:Disable or 1:Enable) */
#define FF_USE_FORWARD 0
/* This option switches f_forward() function. (0:Disable or 1:Enable) */
#define FF_USE_STRFUNC 1
#define FF_PRINT_LLI 0
#define FF_PRINT_FLOAT 0
#define FF_STRF_ENCODE 0
/* FF_USE_STRFUNC switches string functions, f_gets(), f_putc(), f_puts() and
/ f_printf().
/
/ 0: Disable. FF_PRINT_LLI, FF_PRINT_FLOAT and FF_STRF_ENCODE have no effect.
/ 1: Enable without LF-CRLF conversion.
/ 2: Enable with LF-CRLF conversion.
/
/ FF_PRINT_LLI = 1 makes f_printf() support long long argument and FF_PRINT_FLOAT = 1/2
/ makes f_printf() support floating point argument. These features want C99 or later.
/ When FF_LFN_UNICODE >= 1 with LFN enabled, string functions convert the character
/ encoding in it. FF_STRF_ENCODE selects assumption of character encoding ON THE FILE
/ to be read/written via those functions.
/
/ 0: ANSI/OEM in current CP
/ 1: Unicode in UTF-16LE
/ 2: Unicode in UTF-16BE
/ 3: Unicode in UTF-8
*/
/*---------------------------------------------------------------------------/
/ Locale and Namespace Configurations
/---------------------------------------------------------------------------*/
#define FF_CODE_PAGE 932
/* This option specifies the OEM code page to be used on the target system.
/ Incorrect code page setting can cause a file open failure.
/
/ 437 - U.S.
/ 720 - Arabic
/ 737 - Greek
/ 771 - KBL
/ 775 - Baltic
/ 850 - Latin 1
/ 852 - Latin 2
/ 855 - Cyrillic
/ 857 - Turkish
/ 860 - Portuguese
/ 861 - Icelandic
/ 862 - Hebrew
/ 863 - Canadian French
/ 864 - Arabic
/ 865 - Nordic
/ 866 - Russian
/ 869 - Greek 2
/ 932 - Japanese (DBCS)
/ 936 - Simplified Chinese (DBCS)
/ 949 - Korean (DBCS)
/ 950 - Traditional Chinese (DBCS)
/ 0 - Include all code pages above and configured by f_setcp()
*/
#define FF_USE_LFN 0
#define FF_MAX_LFN 255
/* The FF_USE_LFN switches the support for LFN (long file name).
/
/ 0: Disable LFN. FF_MAX_LFN has no effect.
/ 1: Enable LFN with static working buffer on the BSS. Always NOT thread-safe.
/ 2: Enable LFN with dynamic working buffer on the STACK.
/ 3: Enable LFN with dynamic working buffer on the HEAP.
/
/ To enable the LFN, ffunicode.c needs to be added to the project. The LFN function
/ requiers certain internal working buffer occupies (FF_MAX_LFN + 1) * 2 bytes and
/ additional (FF_MAX_LFN + 44) / 15 * 32 bytes when exFAT is enabled.
/ The FF_MAX_LFN defines size of the working buffer in UTF-16 code unit and it can
/ be in range of 12 to 255. It is recommended to be set it 255 to fully support LFN
/ specification.
/ When use stack for the working buffer, take care on stack overflow. When use heap
/ memory for the working buffer, memory management functions, ff_memalloc() and
/ ff_memfree() exemplified in ffsystem.c, need to be added to the project. */
#define FF_LFN_UNICODE 0
/* This option switches the character encoding on the API when LFN is enabled.
/
/ 0: ANSI/OEM in current CP (TCHAR = char)
/ 1: Unicode in UTF-16 (TCHAR = WCHAR)
/ 2: Unicode in UTF-8 (TCHAR = char)
/ 3: Unicode in UTF-32 (TCHAR = DWORD)
/
/ Also behavior of string I/O functions will be affected by this option.
/ When LFN is not enabled, this option has no effect. */
#define FF_LFN_BUF 255
#define FF_SFN_BUF 12
/* This set of options defines size of file name members in the FILINFO structure
/ which is used to read out directory items. These values should be suffcient for
/ the file names to read. The maximum possible length of the read file name depends
/ on character encoding. When LFN is not enabled, these options have no effect. */
#define FF_FS_RPATH 0
/* This option configures support for relative path.
/
/ 0: Disable relative path and remove related functions.
/ 1: Enable relative path. f_chdir() and f_chdrive() are available.
/ 2: f_getcwd() function is available in addition to 1.
*/
/*---------------------------------------------------------------------------/
/ Drive/Volume Configurations
/---------------------------------------------------------------------------*/
#define FF_VOLUMES 2
/* Number of volumes (logical drives) to be used. (1-10) */
#define FF_STR_VOLUME_ID 0
#define FF_VOLUME_STRS "RAM","NAND","CF","SD","SD2","USB","USB2","USB3"
/* FF_STR_VOLUME_ID switches support for volume ID in arbitrary strings.
/ When FF_STR_VOLUME_ID is set to 1 or 2, arbitrary strings can be used as drive
/ number in the path name. FF_VOLUME_STRS defines the volume ID strings for each
/ logical drives. Number of items must not be less than FF_VOLUMES. Valid
/ characters for the volume ID strings are A-Z, a-z and 0-9, however, they are
/ compared in case-insensitive. If FF_STR_VOLUME_ID >= 1 and FF_VOLUME_STRS is
/ not defined, a user defined volume string table is needed as:
/
/ const char* VolumeStr[FF_VOLUMES] = {"ram","flash","sd","usb",...
*/
#define FF_MULTI_PARTITION 0
/* This option switches support for multiple volumes on the physical drive.
/ By default (0), each logical drive number is bound to the same physical drive
/ number and only an FAT volume found on the physical drive will be mounted.
/ When this function is enabled (1), each logical drive number can be bound to
/ arbitrary physical drive and partition listed in the VolToPart[]. Also f_fdisk()
/ function will be available. */
#define FF_MIN_SS 512
#define FF_MAX_SS 512
/* This set of options configures the range of sector size to be supported. (512,
/ 1024, 2048 or 4096) Always set both 512 for most systems, generic memory card and
/ harddisk, but a larger value may be required for on-board flash memory and some
/ type of optical media. When FF_MAX_SS is larger than FF_MIN_SS, FatFs is configured
/ for variable sector size mode and disk_ioctl() function needs to implement
/ GET_SECTOR_SIZE command. */
#define FF_LBA64 0
/* This option switches support for 64-bit LBA. (0:Disable or 1:Enable)
/ To enable the 64-bit LBA, also exFAT needs to be enabled. (FF_FS_EXFAT == 1) */
#define FF_MIN_GPT 0x10000000
/* Minimum number of sectors to switch GPT as partitioning format in f_mkfs and
/ f_fdisk function. 0x100000000 max. This option has no effect when FF_LBA64 == 0. */
#define FF_USE_TRIM 0
/* This option switches support for ATA-TRIM. (0:Disable or 1:Enable)
/ To enable Trim function, also CTRL_TRIM command should be implemented to the
/ disk_ioctl() function. */
/*---------------------------------------------------------------------------/
/ System Configurations
/---------------------------------------------------------------------------*/
#define FF_FS_TINY 0
/* This option switches tiny buffer configuration. (0:Normal or 1:Tiny)
/ At the tiny configuration, size of file object (FIL) is shrinked FF_MAX_SS bytes.
/ Instead of private sector buffer eliminated from the file object, common sector
/ buffer in the filesystem object (FATFS) is used for the file data transfer. */
#define FF_FS_EXFAT 0
/* This option switches support for exFAT filesystem. (0:Disable or 1:Enable)
/ To enable exFAT, also LFN needs to be enabled. (FF_USE_LFN >= 1)
/ Note that enabling exFAT discards ANSI C (C89) compatibility. */
#define FF_FS_NORTC 1
#define FF_NORTC_MON 1
#define FF_NORTC_MDAY 1
#define FF_NORTC_YEAR 2022
/* The option FF_FS_NORTC switches timestamp feature. If the system does not have
/ an RTC or valid timestamp is not needed, set FF_FS_NORTC = 1 to disable the
/ timestamp feature. Every object modified by FatFs will have a fixed timestamp
/ defined by FF_NORTC_MON, FF_NORTC_MDAY and FF_NORTC_YEAR in local time.
/ To enable timestamp function (FF_FS_NORTC = 0), get_fattime() function need to be
/ added to the project to read current time form real-time clock. FF_NORTC_MON,
/ FF_NORTC_MDAY and FF_NORTC_YEAR have no effect.
/ These options have no effect in read-only configuration (FF_FS_READONLY = 1). */
#define FF_FS_NOFSINFO 0
/* If you need to know correct free space on the FAT32 volume, set bit 0 of this
/ option, and f_getfree() function at the first time after volume mount will force
/ a full FAT scan. Bit 1 controls the use of last allocated cluster number.
/
/ bit0=0: Use free cluster count in the FSINFO if available.
/ bit0=1: Do not trust free cluster count in the FSINFO.
/ bit1=0: Use last allocated cluster number in the FSINFO if available.
/ bit1=1: Do not trust last allocated cluster number in the FSINFO.
*/
#define FF_FS_LOCK 0
/* The option FF_FS_LOCK switches file lock function to control duplicated file open
/ and illegal operation to open objects. This option must be 0 when FF_FS_READONLY
/ is 1.
/
/ 0: Disable file lock function. To avoid volume corruption, application program
/ should avoid illegal open, remove and rename to the open objects.
/ >0: Enable file lock function. The value defines how many files/sub-directories
/ can be opened simultaneously under file lock control. Note that the file
/ lock control is independent of re-entrancy. */
#define FF_FS_REENTRANT 0
#define FF_FS_TIMEOUT 1000
/* The option FF_FS_REENTRANT switches the re-entrancy (thread safe) of the FatFs
/ module itself. Note that regardless of this option, file access to different
/ volume is always re-entrant and volume control functions, f_mount(), f_mkfs()
/ and f_fdisk() function, are always not re-entrant. Only file/directory access
/ to the same volume is under control of this featuer.
/
/ 0: Disable re-entrancy. FF_FS_TIMEOUT have no effect.
/ 1: Enable re-entrancy. Also user provided synchronization handlers,
/ ff_mutex_create(), ff_mutex_delete(), ff_mutex_take() and ff_mutex_give()
/ function, must be added to the project. Samples are available in ffsystem.c.
/
/ The FF_FS_TIMEOUT defines timeout period in unit of O/S time tick.
*/
/*--- End of configuration options ---*/
片内FLASH_IAP移植 此部分直接使用原厂提供的IAP函数即可,将文件添加到工程 添加.c文件 添加.h文件路径
#include <stdio.h>
#include "iap.h"
#include "string.h"
iapfun jump2app;
uint8_t uart_receiveBIN_ok;
uint8_t pages_number = 0;
uint32_t ready_write_addr = 0;
uint8_t flash_buf[2048];
extern uint8_t receive_app_done;
extern void IAP_UPDATE_APP(void);
/**================================================================
读取Flash
================================================================*/
uint32_t FLASH_ReadWord(uint32_t address)
{
return *(__IO uint32_t*)address;
}
/**================================================================
APP 跳转
appxaddr:用户代码起始地址.
================================================================*/
void iap_load_app(u32 appxaddr)
{
if(((*(vu32*)appxaddr)&0x0FFFFFFF) < 1024*512) // 检查栈顶地址是否合法.
{
jump2app = (iapfun)*(vu32*)(appxaddr+4);
__set_MSP(*(vu32*)appxaddr); // 初始化堆栈指针
jump2app(); // 跳转到APP.
}
}
/**================================================================
================================================================*/
int32_t app_flag_write(uint32_t data ,uint32_t start_add)
{
FLASH_Unlock();
//
FLASH_EraseOnePage(start_add); //写之前先擦一遍,每次擦2K
if (FLASH_COMPL != FLASH_ProgramWord(start_add, data)) //写
{
FLASH_Lock();
//printf("flash write fail! \r\n");
return 1;
}
FLASH_Lock();
return 0;
}
/**================================================================
================================================================*/
#define FLASH_PAGE_SIZE 2048
/**
* [url=home.php?mod=space&uid=247401]@brief[/url]
* @param void
* @return
* - `SUCCESS: 表示操作成功
* - 其它值表示出错
*/
int32_t app_flash_write(uint32_t *data ,uint32_t Flash_address)
{
uint32_t i;
uint32_t start_add;
start_add = Flash_address;
FLASH_Unlock();
//
for(i = 0;i<FLASH_PAGE_SIZE/FLASH_PAGE_SIZE;i++)
{
FLASH_EraseOnePage(start_add+i*FLASH_PAGE_SIZE); //写之前先擦一遍,每次擦2K
}
//
for(i=0;i<FLASH_PAGE_SIZE/4 ;i++)
{
if (FLASH_COMPL != FLASH_ProgramWord(start_add+i*4, data[i])) //写
{
FLASH_Lock();
//printf("flash write fail! \r\n");
// receive_app_done = 0;
return 1;
}
}
FLASH_Lock();
return 0;
}
/**================================================================
//升级APP
================================================================*/
void IAP_UPDATE_APP(void)
{
ready_write_addr = FLASH_APP_BASE_ADDR + pages_number*2048;
//
while(app_flash_write((uint32_t *)flash_buf , ready_write_addr)); //IAP每次升级2K
//
memset(flash_buf,0x00,2048);
pages_number++;
}
至此,软件包的移植工作就都完成了,接下来实现具体的逻辑操作。 2.2 升级流程说明本实例仅实现基础功能,在实际使用过程中需要根据实际情况进行修改 整体流程如下: 整个方案流程如下 1 MCU启动 2 bootloader判断升级标志状态,标志不为0x12345678,进入步骤3,标志为0x12345678,进行跳转至app,进入步骤7 3 bootloader初始化外设 4 bootloader初始化文件系统 5 bootloader检查app升级文件是否存在,升级文件存在,输出提示信息,并等待升级命令。未收到升级命令则正常运行。 6 bootloader收到升级命令,读取SD卡内升级文件写入app区,写入完成,跳转至APP 7 app判断升级标志状态,标志不为0x12345678,代表第一次进入app,需要将升级标志写为0x12345678。标志为0x12345678,代表从bootloader正常启动。 8 app初始化外设 9 app初始化文件系统 10 app检查app升级文件是否存在,升级文件存在,输出提示信息,并等待升级命令 11 app收到升级命令,需要先擦除升级标志,并进行系统复位,回到步骤1。未收到升级命令则正常运行。
我的这个SD_IAP实例因为BootLoader和application功能都十分类似,因此使用一个工程下的不同项目进行维护 在不同点使用宏定义进行编译选择。在app内添加SD_SPI_APP宏定义作为编译开关。 不同项目输出的bin文件路径也分别进行了设置,防止出现错误 这里重点说一个MDK的小技巧,在进入bootloader和application后都要进行中断向量的重新映射才能使程序正常运行,例如: 一般的做法都是在bootloader和application使用不同的宏定义区实现,比如 这种方式在修改时有时会遗忘,比较麻烦,MDK可采用下图的方式修改,一劳永逸。不用再为不同起始地址配置不同的宏定义,一切都由MDK根据FLASH地址的配置自动设置。 void System_Init(void)
{
/* 设置中断向量表后,开启总中断 */
extern int Image$ER_IROM1$Base;
__disable_irq();
SCB->VTOR = (uint32_t)&Image$ER_IROM1$Base;
__enable_irq();
}
3. 升级兼容性测试为了测试此升级程序的兼容性,我准备了SD卡(512MB)TF卡(16GB)MMC卡(1GB)分别使用不同的文件格式进行了测试 SD卡(512MB)FAT格式,升级正常 SD卡(512MB)FAT32格式,升级正常 SD卡(512MB)exFAT格式,升级失败 TF卡(16GB),FAT32格式,升级正常,不支持FAT,没测试 TF卡(16GB),exFAT格式,升级失败 MMC卡(1GB)任何格式升级都失败
失败原因应该是文件系统的配置有问题,理论上3中卡都可以支持,如需对各种格式的卡进行兼容需要仔细研究ffconf.h内的配置项,根据需求进行配置。
视频:
|