51xlf 发表于 2025-1-26 22:38

【STM32H745I-DISCO试用】读写SDRAM



STM32H745I通常通过外部存储控制器(FMC)与SDRAM进行连接。FMC提供了多个存储器接口,包括SDRAM接口,支持多种SDRAM类型,如SDR SDRAM、DDR SDRAM和LPDDR SDRAM。这使得STM32H745I能够灵活地与不同类型的SDRAM进行通信。
三、读写操作前的准备
[*]初始化设置:在使用STM32H745I进行SDRAM读写操作之前,需要对SDRAM进行初始化设置。这包括配置FMC控制器的时序参数、刷新周期和读写延迟等。具
的初始化过程可以参考STM32H7的官方文档和参考手册
驱动STM32H745I-DISCO开发板上安装的MT48LC4M32B2B5-6A SDRAM外部存储器。
   SDRAM存储器接口。它包含使用BSP_SDRAM_Initialization_sequence()函数对外部SDRAM设备进行编程的SDRAM初始化序列。请注意,此序列对于所有SDRAM设备都是标准的,但不同设备之间可能存在一些差异。如果确实存在这种情况,应单独实现正确的序列。
SDRAM读写操作:
一旦初始化完成,就可以通过读写操作访问外部SDRAM存储器。
可以使用AHB访问通过BSP_SDRAM_ReadData()/BSP_SDRAM_WriteData()函数执行读写操作,或者通过MDMA传输使用BSP_SDRAM_ReadData_DMA()/BSP_SDRAM_WriteData_DMA()函数。
AHB访问以32位宽事务执行,MDMA传输配置固定为单字(无突发)传输(请参阅SDRAM_MspInit()静态函数)。
用户可以实现自己的读写访问函数,以使用所需的配置。
如果使用中断模式进行MDMA传输,则在MDMA传输完成时,将在IRQ处理程序文件中调用BSP_SDRAM_MDMA_IRQHandler()函数来处理生成的中断。
您可以使用BSP_SDRAM_Sendcmd()函数在运行时向SDRAM设备发送命令,并给出作为参数的所需命令,该命令在“FMC_SDRAM_CommandTypeDef”结构中预定义。
SDARAM的初始化代码
地址映射:确保SDRAM的地址映射正确,以便STM32H745I能够准确地访问存储单元。复制
#include "stm32h745i_discovery_sdram.h"

/** @addtogroup BSP
* @{
*/

/** @addtogroup STM32H745I_DISCO
* @{
*/

/** @defgroup STM32H745I_DISCO_SDRAM SDRAM
* @{
*/

/** @defgroup STM32H745I_DISCO_SDRAM_Exported_Variables Exported Variables
* @{
*/
SDRAM_HandleTypeDef hsdram;
/**
* @}
*/

/** @defgroup STM32H745I_DISCO_SDRAM_Private_Variables Private Variables
* @{
*/
#if (USE_HAL_SDRAM_REGISTER_CALLBACKS == 1)
static uint32_t IsMspCallbacksValid = 0;
#endif
/**
* @}
*/

/** @defgroup STM32H745I_DISCO_SDRAM_Private_Function_Prototypes Private Functions Prototypes
* @{
*/
static void SDRAM_MspInit(SDRAM_HandleTypeDef*hSdram);
static void SDRAM_MspDeInit(SDRAM_HandleTypeDef*hSdram);
/**
* @}
*/

/** @defgroup STM32H745I_DISCO_SDRAM_Exported_Functions Exported Functions
* @{
*/

/**
* @briefInitializes the SDRAM device.
* @param InstanceSDRAM Instance
* @retval BSP status
*/
int32_t BSP_SDRAM_Init(uint32_t Instance)
{
int32_t ret = BSP_ERROR_NONE;
static MT48LC4M32B2_Context_t pRegMode;
if(Instance >=SDRAM_INSTANCES_NBR)
{
    ret =BSP_ERROR_WRONG_PARAM;
}
else
{
#if (USE_HAL_SDRAM_REGISTER_CALLBACKS == 1)
    /* Register the SDRAM MSP Callbacks */
    if(IsMspCallbacksValid == 0)
    {
      if(BSP_SDRAM_RegisterDefaultMspCallbacks(Instance) != BSP_ERROR_NONE)
      {
      return BSP_ERROR_PERIPH_FAILURE;
      }
    }
#else
    /* Msp SDRAM initialization */
    SDRAM_MspInit(&hsdram);
#endif /* USE_HAL_SDRAM_REGISTER_CALLBACKS */
    if(MX_SDRAM_BANK2_Init(&hsdram,FMC_SDRAM_ROW_BITS_NUM_12, FMC_SDRAM_MEM_BUS_WIDTH_16) != HAL_OK)
    {
      ret = BSP_ERROR_NO_INIT;
    }
    else
    {
      /* External memory mode register configuration */
      pRegMode.TargetBank      = FMC_SDRAM_CMD_TARGET_BANK2;
      pRegMode.RefreshMode   = MT48LC4M32B2_AUTOREFRESH_MODE_CMD;
      pRegMode.RefreshRate   = REFRESH_COUNT;
      pRegMode.BurstLength   = MT48LC4M32B2_BURST_LENGTH_1;
      pRegMode.BurstType       = MT48LC4M32B2_BURST_TYPE_SEQUENTIAL;
      pRegMode.CASLatency      = MT48LC4M32B2_CAS_LATENCY_3;
      pRegMode.OperationMode   = MT48LC4M32B2_OPERATING_MODE_STANDARD;
      pRegMode.WriteBurstMode= MT48LC4M32B2_WRITEBURST_MODE_SINGLE;

      /* SDRAM initialization sequence */
      if(MT48LC4M32B2_Init(&hsdram, &pRegMode) != MT48LC4M32B2_OK)
      {
      ret =BSP_ERROR_COMPONENT_FAILURE;
      }
    }
}

return ret;
}

/**
* @briefDeInitializes the SDRAM device.
* @paramInstanceSDRAM Instance
* @retval BSP status
*/
int32_t BSP_SDRAM_DeInit(uint32_t Instance)
{
int32_t ret = BSP_ERROR_NONE;

if(Instance >= SDRAM_INSTANCES_NBR)
{
    ret =BSP_ERROR_WRONG_PARAM;
}
else
{
    (void)HAL_SDRAM_DeInit(&hsdram);
#if (USE_HAL_SDRAM_REGISTER_CALLBACKS == 0)
    /* SDRAM controller de-initialization */
    SDRAM_MspDeInit(&hsdram);
#endif /* (USE_HAL_SDRAM_REGISTER_CALLBACKS == 0) */
}

return ret;
}

/**
* @briefInitializes the SDRAM periperal.
* @paramhSdram SDRAM handle
* @paramRowBitsNumber Number of row to set
* @paramMemoryDataWidth The momory width 16 or 32bits
* @retval HAL status
*/
__weak HAL_StatusTypeDef MX_SDRAM_BANK2_Init(SDRAM_HandleTypeDef *hSdram, uint32_t RowBitsNumber, uint32_t MemoryDataWidth)
{
FMC_SDRAM_TimingTypeDef sdram_timing;

/* SDRAM device configuration */
hsdram->Instance = FMC_SDRAM_DEVICE;

/* SDRAM handle configuration */
hSdram->Init.SDBank             = FMC_SDRAM_BANK2;
hSdram->Init.ColumnBitsNumber   = FMC_SDRAM_COLUMN_BITS_NUM_8;
hSdram->Init.RowBitsNumber      = RowBitsNumber;
hSdram->Init.MemoryDataWidth    = MemoryDataWidth;
hsdram->Init.InternalBankNumber = FMC_SDRAM_INTERN_BANKS_NUM_4;
hSdram->Init.CASLatency         = FMC_SDRAM_CAS_LATENCY_3;
hSdram->Init.WriteProtection    = FMC_SDRAM_WRITE_PROTECTION_DISABLE;
hSdram->Init.SDClockPeriod      = FMC_SDRAM_CLOCK_PERIOD_2;
hSdram->Init.ReadBurst          = FMC_SDRAM_RBURST_ENABLE;
hSdram->Init.ReadPipeDelay      = FMC_SDRAM_RPIPE_DELAY_0;

/* Timing configuration for as SDRAM */
sdram_timing.LoadToActiveDelay    = 2;
sdram_timing.ExitSelfRefreshDelay = 7;
sdram_timing.SelfRefreshTime      = 4;
sdram_timing.RowCycleDelay      = 7;
sdram_timing.WriteRecoveryTime    = 2;
sdram_timing.RPDelay            = 2;
sdram_timing.RCDDelay             = 2;

/* SDRAM controller initialization */
if(HAL_SDRAM_Init(hSdram, &sdram_timing) != HAL_OK)
{
    returnHAL_ERROR;
}
return HAL_OK;
}


#if (USE_HAL_SDRAM_REGISTER_CALLBACKS == 1)
/**
* @brief Default BSP SDRAM Msp Callbacks
* @param Instance      SDRAM Instance
* @retval BSP status
*/
int32_t BSP_SDRAM_RegisterDefaultMspCallbacks (uint32_t Instance)
{
int32_t ret = BSP_ERROR_NONE;

/* Check if the instance is supported */
if(Instance >= SDRAM_INSTANCES_NBR)
{
    ret = BSP_ERROR_WRONG_PARAM;
}
else
{
    /* Register MspInit/MspDeInit Callbacks */
    if(HAL_SDRAM_RegisterCallback(&hsdram, HAL_SDRAM_MSP_INIT_CB_ID, SDRAM_MspInit) != HAL_OK)
    {
      ret = BSP_ERROR_PERIPH_FAILURE;
    }
    if(HAL_SDRAM_RegisterCallback(&hsdram, HAL_SDRAM_MSP_DEINIT_CB_ID, SDRAM_MspDeInit) != HAL_OK)
    {
      ret = BSP_ERROR_PERIPH_FAILURE;
    }
    else
    {
      IsMspCallbacksValid = 1;
    }
}
/* Return BSP status */
return ret;
}

/**
* @brief BSP SDRAM Msp Callback registering
* @param Instance   SDRAM Instance
* @param CallBacks    pointer to MspInit/MspDeInit callbacks functions
* @retval BSP status
*/
int32_t BSP_SDRAM_RegisterMspCallbacks (uint32_t Instance, BSP_SDRAM_Cb_t *CallBacks)
{
int32_t ret = BSP_ERROR_NONE;

/* Check if the instance is supported */
if(Instance >= SDRAM_INSTANCES_NBR)
{
    ret = BSP_ERROR_WRONG_PARAM;
}
else
{
    /* Register MspInit/MspDeInit Callbacks */
    if(HAL_SDRAM_RegisterCallback(&hsdram, HAL_SDRAM_MSP_INIT_CB_ID, CallBacks->pMspInitCb) != HAL_OK)
    {
      ret = BSP_ERROR_PERIPH_FAILURE;
    }
    if(HAL_SDRAM_RegisterCallback(&hsdram, HAL_SDRAM_MSP_DEINIT_CB_ID, CallBacks->pMspDeInitCb) != HAL_OK)
    {
      ret = BSP_ERROR_PERIPH_FAILURE;
    }
    else
    {
      IsMspCallbacksValid = 1;
    }
}
/* Return BSP status */
return ret;
}
#endif /* (USE_HAL_SDRAM_REGISTER_CALLBACKS == 1) */

/**
* @briefSends command to the SDRAM bank.
* @paramInstanceSDRAM Instance
* @paramSdramCmdPointer to SDRAM command structure
* @retval BSP status
*/
int32_t BSP_SDRAM_SendCmd(uint32_t Instance, FMC_SDRAM_CommandTypeDef *SdramCmd)
{
int32_t ret;

if(Instance >= SDRAM_INSTANCES_NBR)
{
    ret =BSP_ERROR_WRONG_PARAM;
}
else if(MT48LC4M32B2_Sendcmd(&hsdram, SdramCmd) != MT48LC4M32B2_OK)
{
    ret = BSP_ERROR_PERIPH_FAILURE;
}
else
{
    ret = BSP_ERROR_NONE;
}

return ret;
}

/**
* @briefThis function handles SDRAM MDMA interrupt request.
* @paramInstance SDRAM instance
* @retval None
*/
void BSP_SDRAM_IRQHandler(uint32_t Instance)
{
HAL_MDMA_IRQHandler(hsdram.hmdma);
}

/**
* @}
*/

/** @defgroup STM32H745I_DISCO_SDRAM_Private_Functions Private Functions
* @{
*/
/**
* @briefInitializes SDRAM MSP.
* @paramhSdram SDRAM handle
* @retval None
*/
static void SDRAM_MspInit(SDRAM_HandleTypeDef*hSdram)
{
static MDMA_HandleTypeDef mdma_handle;
GPIO_InitTypeDef gpio_init_structure;

/* Enable FMC clock */
__HAL_RCC_FMC_CLK_ENABLE();

/* Enable chosen MDMAx clock */
SDRAM_MDMAx_CLK_ENABLE();

/* Enable GPIOs clock */
__HAL_RCC_GPIOD_CLK_ENABLE();
__HAL_RCC_GPIOE_CLK_ENABLE();
__HAL_RCC_GPIOF_CLK_ENABLE();
__HAL_RCC_GPIOG_CLK_ENABLE();
__HAL_RCC_GPIOH_CLK_ENABLE();

/* Common GPIO configuration */
gpio_init_structure.Mode      = GPIO_MODE_AF_PP;
gpio_init_structure.Pull      = GPIO_PULLUP;
gpio_init_structure.Speed   = GPIO_SPEED_FREQ_VERY_HIGH;
gpio_init_structure.Alternate = GPIO_AF12_FMC;

/* GPIOD configuration */
gpio_init_structure.Pin   = GPIO_PIN_0 | GPIO_PIN_1 | GPIO_PIN_8| GPIO_PIN_9 | GPIO_PIN_10 |\
                              GPIO_PIN_14 | GPIO_PIN_15;


HAL_GPIO_Init(GPIOD, &gpio_init_structure);

/* GPIOE configuration */
gpio_init_structure.Pin   = GPIO_PIN_0 | GPIO_PIN_1 | GPIO_PIN_7| GPIO_PIN_8 | GPIO_PIN_9 |\
                              GPIO_PIN_10 | GPIO_PIN_11 | GPIO_PIN_12 | GPIO_PIN_13 | GPIO_PIN_14 |\
                              GPIO_PIN_15;

HAL_GPIO_Init(GPIOE, &gpio_init_structure);

/* GPIOF configuration */
gpio_init_structure.Pin   = GPIO_PIN_0 | GPIO_PIN_1 | GPIO_PIN_2| GPIO_PIN_3 | GPIO_PIN_4 |\
                              GPIO_PIN_5 | GPIO_PIN_11 | GPIO_PIN_12 | GPIO_PIN_13 | GPIO_PIN_14 |\
                              GPIO_PIN_15;

HAL_GPIO_Init(GPIOF, &gpio_init_structure);

/* GPIOG configuration */
gpio_init_structure.Pin   = GPIO_PIN_0 | GPIO_PIN_1 | GPIO_PIN_4 | GPIO_PIN_5 | GPIO_PIN_8 | GPIO_PIN_15;
HAL_GPIO_Init(GPIOG, &gpio_init_structure);

/* GPIOH configuration */
gpio_init_structure.Pin   = GPIO_PIN_5 | GPIO_PIN_6 | GPIO_PIN_7 ;
HAL_GPIO_Init(GPIOH, &gpio_init_structure);



///* Configure common MDMA parameters */
//mdma_handle.Init.Request = MDMA_REQUEST_SW;
//mdma_handle.Init.TransferTriggerMode = MDMA_BLOCK_TRANSFER;
//mdma_handle.Init.Priority = MDMA_PRIORITY_HIGH;
//mdma_handle.Init.Endianness = MDMA_LITTLE_ENDIANNESS_PRESERVE;
//mdma_handle.Init.SourceInc = MDMA_SRC_INC_WORD;
//mdma_handle.Init.DestinationInc = MDMA_DEST_INC_WORD;
//mdma_handle.Init.SourceDataSize = MDMA_SRC_DATASIZE_WORD;
//mdma_handle.Init.DestDataSize = MDMA_DEST_DATASIZE_WORD;
//mdma_handle.Init.DataAlignment = MDMA_DATAALIGN_PACKENABLE;
//mdma_handle.Init.SourceBurst = MDMA_SOURCE_BURST_SINGLE;
//mdma_handle.Init.DestBurst = MDMA_DEST_BURST_SINGLE;
//mdma_handle.Init.BufferTransferLength = 128;
//mdma_handle.Init.SourceBlockAddressOffset = 0;
//mdma_handle.Init.DestBlockAddressOffset = 0;


//mdma_handle.Instance = SDRAM_MDMAx_CHANNEL;

//   /* Associate the DMA handle */
//__HAL_LINKDMA(hsdram, hmdma, mdma_handle);

///* Deinitialize the stream for new transfer */
//HAL_MDMA_DeInit(&mdma_handle);

///* Configure the DMA stream */
//HAL_MDMA_Init(&mdma_handle);

///* NVIC configuration for DMA transfer complete interrupt */
//HAL_NVIC_SetPriority(SDRAM_MDMAx_IRQn, 0x0F, 0);
//HAL_NVIC_EnableIRQ(SDRAM_MDMAx_IRQn);
}

/**
* @briefDeInitializes SDRAM MSP.
* @paramhSdram SDRAM handle
* @retval None
*/
static void SDRAM_MspDeInit(SDRAM_HandleTypeDef*hSdram)
{
static MDMA_HandleTypeDef mdma_handle;

/* Prevent unused argument(s) compilation warning */
UNUSED(hSdram);

/* Disable NVIC configuration for DMA interrupt */
HAL_NVIC_DisableIRQ(SDRAM_MDMAx_IRQn);

/* Deinitialize the stream for new transfer */
mdma_handle.Instance = SDRAM_MDMAx_CHANNEL;
(void)HAL_MDMA_DeInit(&mdma_handle);
}


四、读写操作
[*]读操作:从SDRAM中读取数据的过程。在发送读命令后,需要等待一定的时间(如CAS潜伏期)才能获取到数据。
[*]写操作:向SDRAM中写入数据的过程。写操作也需要在正确的时序下进行,以确保数据能够正确地写入存储单元。需要注意的是,写操作并不是即时的,因为选通三极管与电容的充电需要一定的时间。
测试代码
复制
if(BSP_SDRAM_Init(0) != BSP_ERROR_NONE)
    {
      printf("SDRAM Initialization : FAILED.\r\n");
      printf("SDRAM Test Aborted.\r\n");
    }
    else
    {
      printf("SDRAM Initialization : OK.\r\n");
    }
    /* Fill the buffer to write */
    Fill_Buffer(sdram_aTxBuffer, BUFFER_SIZE, 0xA244250F);


    /* Write data to the SDRAM memory */
    if(HAL_SDRAM_Write_32b(&hsdram[0], (uint32_t *)(SDRAM_WRITE_READ_ADDR + WRITE_READ_ADDR), (uint32_t*)sdram_aTxBuffer, BUFFER_SIZE) != BSP_ERROR_NONE)
    {
      printf("SDRAM WRITE : FAILED.\r\n");
      printf("SDRAM Test Aborted.\r\n");
    }
    else
    {
      printf("SDRAM WRITE : OK.\r\n");
    }

    /* Read back data from the SDRAM memory */
    if(HAL_SDRAM_Read_32b(&hsdram[0], (uint32_t *)(SDRAM_WRITE_READ_ADDR + WRITE_READ_ADDR), (uint32_t*)sdram_aRxBuffer, BUFFER_SIZE) != BSP_ERROR_NONE)
    {
      printf("SDRAM READ : FAILED.\r\n");
      printf("SDRAM Test Aborted.\r\n");
    }
    else
    {
      printf("SDRAM READ : OK.\r\n");
    }


    if(Buffercmp(sdram_aTxBuffer, sdram_aRxBuffer, BUFFER_SIZE) > 0)
    {
      printf("SDRAM COMPARE : FAILED.\r\n");
      printf("SDRAM Test Aborted.\r\n");

    }
    else
    {
      printf("SDRAM Test : OK.\r\n");
    }


星辰大海不退缩 发表于 2025-1-30 14:17

读写SDRAM

xhackerustc 发表于 2025-2-15 17:39

有没有试过访问sdram后8MB?我发现这块板子访问后8MB SDRAM会出错

xhackerustc 发表于 2025-2-15 18:17

测试代码可见https://bbs.21ic.com/icview-3432362-1-1.html

bestwell 发表于 2025-2-22 08:48

SDRAM 提供稳定的电源至关重要。

abotomson 发表于 2025-2-22 09:04

在写入数据时,要先激活对应的BANK和行地址,然后发送列地址以及要写入的数据。注意数据的写入需要一定的周期,要保证足够的写入/校正时间(tWR),以确保数据可靠写入。

updownq 发表于 2025-2-22 09:14

STM32H745I-DISCO的FMC接口驱动SDRAM时,必须对FMC的时钟源进行选择。

kkzz 发表于 2025-2-22 09:26

STM32H745I-DISCO的SDRAM接口支持8位、16位和32位数据宽度,需要根据实际情况进行配置。

alvpeg 发表于 2025-2-22 09:39

合理使用 STM32 的缓存机制可以提高读写 SDRAM 的效率。

mmbs 发表于 2025-2-22 09:53

注意信号完整性,避免高速信号线的干扰

febgxu 发表于 2025-2-22 10:06

在 CubeMX 中配置堆大小            

earlmax 发表于 2025-2-22 10:21

在读写操作之前,必须对SDRAM进行正确的初始化。这通常包括以下步骤:
发送预充电命令,使所有存储体都进入预充电状态。
发送自刷新命令,以初始化刷新计数器。
设置模式寄存器,配置SDRAM的工作模式,如CAS延迟、突发长度等。
进入正常工作状态。

louliana 发表于 2025-2-22 10:32

STM32H745I-DISCO板上的SDRAM可能存在访问限制。

yeates333 发表于 2025-2-22 10:45

SDRAM访问需按字节对齐 ,否则可能导致访问错误。

backlugin 发表于 2025-2-22 11:04

使用 DMA 来提高数据传输效率。

youtome 发表于 2025-2-22 11:18

STM32H7微控制器通常通过外部存储控制器(FMC)与SDRAM进行连接。

sanfuzi 发表于 2025-2-22 11:30

使用STM32CubeMX配置FMC参数,包括SDRAM的时序、数据宽度等。

pentruman 发表于 2025-2-22 12:02

根据应用需求进行优化设置,以提高读写性能。

janewood 发表于 2025-2-22 12:14

在进行SDRAM读写操作时,要能够检测和处理可能出现的错误情况,如数据传输错误、地址错误等。可以通过检查返回状态码等方式来判断操作是否成功。

robincotton 发表于 2025-2-22 12:27

以选择合适的时钟源和时钟分频方式,以及调整CAS潜伏期等参数。
页: [1] 2
查看完整版本: 【STM32H745I-DISCO试用】读写SDRAM