打印
[国产单片机]

QBD1044 datasheet 国产TJA1044 VP230 SN65HVD230 CAN收发器芯片手册

[复制链接]
1858|1
手机看帖
扫描二维码
随时随地手机跟帖
跳转到指定楼层
楼主
OBD芯方案|  楼主 | 2019-11-6 14:53 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
QBD1044(CAN2.0B CANFD)
3.3V & 5V  High-speed CAN transceiver with Standby mode


Rev. 5 — 24 August 2019        Product data sheet



1       General description


The QBD1044 is high-speed CAN transceivers It provides an interface between a Controller Area Network (CAN) protocol controller and the physical two-wire CAN bus. The transceiver is designed for high-speed CAN applications in the automotive industry, providing the differential transmit and receive capability to (a microcontroller with) a CAN protocol controller.

The QBD1044 offers a feature set optimized for 12V and 24V automotive applications, with significant improvements over Chipsmi's  first- and second-generation CAN transceivers, suchas the QBD1040, and excellent ElectroMagnetic Compatibility (EMC) performance. Additionally, the QBD1044 features:
•Ideal passive behavior to the CAN bus when the supply voltage is off
•A very low-current Standby mode with bus wake-up capability
•Excellent EMC performance at speeds up to 5Mbps even without a common mode choke
•QBD1044 can be interfaced directly to MCU with supply voltages from 3V to 5 V
•QBD1044 Can work with Power supply from 3V to 5 V

These features make the QBD1044 an excellent choice for all types of HS-CAN networks, in nodes that require a low-power mode with wake-up capability via the CAN bus.

The QBD1044 implements the CAN physical layer as defined in ISO 11898-2:2016 and SAE J2284-1 to SAE J2284-5. The QBD1044 is specified for data rates up to 5 Mbit/s. Additional timing parameters defining loop delay symmetry are specified for the other variants. This implementation enables reliable communication in the CAN FD fast phase at data rates up to 5 Mbit/s.


2      Features and benefits



2.4General
•Fully functional compatible with the TJA1044 device and TI SN65HVD230.
•Vdd power supply compatible with 3.3 V and 5 V devices.
•Input levels compatible with 3.3 V and 5 V devices.
•Fully ISO 11898-2:2016 and SAE J2284-1 to SAE J2284-5 compliant
•Very low-current Standby mode with host and bus wake-up capability
•Optimized for use in 12 V and 24V automotive systems
•Dark green product (halogen free and Restriction of Hazardous Substances (RoHS) compliant)











High-speed CAN transceiver with Standby mode


•Differential receiver with wide common-mode range for high ElectroMagnetic Immunity (EMI).
•An unpowered node does not disturb the bus lines.
•Transmit Data (TXD) dominant time-out function.
•Silent mode in which the transmitter is disabled.
•Bus pins protected against transients in an automotive environment.

2.5Predictable and fail-safe behavior
•Functional behavior predictable under all supply conditions
•Transceiver disengages from bus when not powered (zero load)
•Transmit Data (TXD) and bus dominant time-out functions
•Internal biasing of TXD and STB input pins

2.6Protection
•High ESD handling capability on the bus pins (8 kV IEC and HBM)
•Bus pins protected against transients in automotive environments
•Thermally protected

2.7QBD1044 CAN FD (applicable to all product variants)
•Timing guaranteed for CAN FD data rates up to 5 Mbit/s
•Improved TXD to RXD propagation delay of 210 ns






























High-speed CAN transceiver with Standby mode

3   Quick reference data


Table 1.        Quick reference data

Symbol        Parameter        Conditions        Min        Typ        Max        Unit
VCC        supply voltage                3.0        -        5.5        V
ICC        supply current        Standby mode; variants without a VIO pin        -        10        15        A
                Standby mode; variants with a VIO pin        -        -        5        A
                Normal mode; bus recessive        -        4        10        mA
                Normal mode; bus dominant        -        63        80        mA
VESD        electrostatic discharge voltage        IEC 61000-4-2 at pins CANH and CANL        -8        -        +8        kV
TOP        Operation temperature                -40        -        +125        C


4   Block diagram

































High-speed CAN transceiver with Standby mode
5    Pinning information



Pinning (SOP8 & DFN3X3)

Fig 2.        Pin configuration diagrams

Pin description

Table 3.        Pin description

Symbol        Pin        Description
TXD        1        transmit data input
GND        2        ground supply
VCC        3        supply voltage
RXD        4        receive data output; reads out data from the bus lines
n.c.        5        reserved
CANL        6        LOW-level CAN bus line
CANH        7        HIGH-level CAN bus line
SEL        8        Standby mode control input Selection




















High-speed CAN transceiver with Standby mode
6    Functional description



–Operating modes
The QBD1044 supports two operating modes, Normal and Standby. The operating mode is selected via pin STB. See Ta ble 4 for a description of the operating modes under normal supply conditions.

Table 4.        Operating modes

Mode        Inputs        Outputs
        Pin STB        Pin TXD        CAN driver        Pin RXD
Normal        LOW        LOW        dominant        LOW
                HIGH        recessive        LOW when bus dominant
                                HIGH when bus recessive
Standby        HIGH        x[1]        biased to ground        follows BUS when wake-up detected
                                HIGH when no wake-up detected
[1]   ‘x’ = don’t care.

•Normal mode
A LOW level on pin STB selects Normal mode. In this mode, the transceiver can transmit and receive data via the bus lines CANH and CANL (see Figure 1 for the block diagram). The differential receiver converts the analog data on the bus lines into digital data which is output on pin RXD. The slopes of the output signals on the bus lines are controlled internally and are optimized in a way that guarantees the lowest possible EME.

•Standby mode
A HIGH level on pin STB selects Standby mode. In Standby mode, the transceiver is not able to transmit or correctly receive data via the bus lines. The transmitter and
Normal-mode receiver blocks are switched off to reduce supply current, and only a low-power differential receiver monitors the bus lines for activity.
In Standby mode, the bus lines are biased to ground to minimize system supply current. The low-power receiver is supplied from VIO (VCC in non-VIO variants) and can detect CAN bus activity even if VIO is the only available supply voltage. Pin RXD follows the bus after a wake-up request has been detected. A transition to Normal mode is triggered when STB is forced LOW.

–Remote wake-up (via the CAN bus)
The QBD1044 wakes up from Standby mode when a dedicated wake-up pattern (specified in ISO 11898-2:2016) is detected on the bus. This filtering helps avoid spurious wake-up events. A spurious wake-up sequence could be triggered by, for example, a dominant clamped bus or by dominant phases due to noise or spikes on the bus.

The wake-up pattern consists of:
–a dominant phase of at least twake(busdom) followed by
–a recessive phase of at least twake(busrec) followed by
–a dominant phase of at least twake(busdom)



High-speed CAN transceiver with Standby mode


Dominant or recessive bits between the above mentioned phases that are shorter than twake(busdom) and twake(busrec) respectively are ignored.
The complete dominant-recessive-dominant pattern must be received within tto(wake)bus to be recognized as a valid wake-up pattern (see Figure 3). Otherwise, the internal wake-up logic is reset. The complete wake-up pattern will then need to be retransmitted to trigger a wake-up event. Pin RXD remains HIGH until the wake-up event has been triggered.

After a wake-up sequence has been detected, the QBD1044 will remain in Standby mode with the bus signals reflected on RXD. Note that dominant or recessive phases lasting less than tfltr(wake)bus will not be detected by the low-power differential receiver and will not be reflected on RXD in Standby mode.

A wake-up event is not flagged on RXD if any of the following events occurs while a valid wake-up pattern is being received:
–The QBD1044 switches to Normal mode
–The complete wake-up pattern was not received within tto(wake)bus
–A VCC or VIO undervoltage is detected (VCC < Vuvd(swoff)(VCC) or VIO < Vuvd(swoff)(VIO); see Section 7.3)



–Fail-safe features

•TXD dominant time-out function
A 'TXD dominant time-out' timer is started when pin TXD is set LOW. If the LOW state on this pin persists for longer than tto(dom)TXD, the transmitter is disabled, releasing the bus lines to recessive state. This function prevents a hardware and/or software application failure from driving the bus lines to a permanent dominant state (blocking all network
communications). The TXD dominant time-out timer is reset when pin TXD is set HIGH. The TXD dominant time-out time also defines the minimum possible bit rate of approximately 25 kbit/s.



High-speed CAN transceiver with Standby mode


•Internal biasing of TXD and STB input pins
Pins TXD and STB have internal pull-ups to VCC (VIO for variants with a VIO pin) to ensure a safe, defined state in case one or both of these pins are left floating. Pull-up currents flow in these pins in all states; both pins should be held HIGH in Standby mode to minimize supply current.


•Overtemperature protection
The output drivers are protected against overtemperature conditions. If the virtual junction temperature exceeds the shutdown junction temperature, Tj(sd), both output drivers are disabled. When the virtual junction temperature drops below Tj(sd) again, the output drivers recover once TXD has been reset to HIGH. Including the TXD condition prevents output driver oscillation due to small variations in temperature.













































































































































































High-speed CAN transceiver with Standby mode


7   Limiting values



Table 5.        Limiting values
In accordance with the Absolute Maximum Rating System (IEC 60134). All voltages are referenced to GND.

Symbol        Parameter        Conditions        Min        Max        Unit
V(CANH-CANL)        voltage between pin CANH and pin CANL                 27        +27        V
VESD        electrostatic discharge voltage        IEC 61000-4-2 (150 pF, 330 )        [5]                       
                on pins CANH and CANL        8        +8        kV
                Human Body Model (HBM); 100 pF, 1.5 k        [6]                       
                on pins CANH and CANL        8        +8        kV
                on any other pin        4        +4        kV
                                       
                                       
                                       
                                       
                on any other pin        500        +500        V
Tvj        virtual junction temperature                40        +150        C
Tstg        storage temperature                55        +150        C




High-speed CAN transceiver with Standby mode


8     Static characteristics



Table 7.        Static characteristics
Tvj = 40 C to +150 C; VCC = 3.0V to 5.5 V; RL = 60 ; CL = 100 pF unless specified otherwise; All voltages are defined with respect to ground. Positive currents flow into the IC.[2]

Symbol        Parameter        Conditions        Min        Typ        Max        Unit
Supply; pin VCC
VCC        supply voltage                3.0        -        5.5        V



High-speed CAN transceiver with Standby mode


Table 7.        Static characteristics …continued
Tvj = 40 C to +150 C; VCC = 3.0V to 5.5 V; RL = 60 ; CL = 100 pF unless specified otherwise; All voltages are defined with respect to ground. Positive currents flow into the IC.[2]

Symbol        Parameter        Conditions        Min        Typ        Max        Unit
Standby mode control input; pin STB
VIH        HIGH-level input voltage        variants with a VIO pin        0.7VIO        -        VIO+ 0.3        V
                variants without a VIO pin        2        -        VCC+ 0.3        V
VIL        LOW-level input voltage        variants with a VIO pin        0.3VIO        -        +0.3VIO        V
                variants without a VIO pin        0.3        -        +0.8        V
IIH        HIGH-level input current        VSTB = V  [3]
IO        1        -        +1        A
IIL        LOW-level input current        VSTB = 0 V        15        -        1        A
CAN transmit data input; pin TXD
VIH        HIGH-level input voltage        variants with a VIO pin        0.7VIO        -        VIO+ 0.3        V
                variants without a VIO pin        2        -        VCC+ 0.3        V
VIL        LOW-level input voltage        variants with a VIO pin        0.3VIO        -        +0.3VIO        V
                variants without a VIO pin        0.3        -        +0.8        V
IIH        HIGH-level input current        VTXD = VIO[3]        5        -        +5        A
IIL        LOW-level input current        VTXD =0 V; variants with a VIO pin        260        150        60        A
                VTXD =0 V;
variants without a VIO pin        260        150        70        A
Ci        input capacitance                -        13        -        pF
CAN receive data output; pin RXD
IOH        HIGH-level output current        VRXD = VIO[3] 0.4 V        8        3        1        mA
IOL        LOW-level output current        VRXD = 0.4 V; bus dominant        1        -        12        mA
Bus lines; pins CANH and CANL
VO(dom)        dominant output voltage        VTXD =0 V; t < tto(dom)TXD                               
                pin CANH; RL = 50 to 65         2.75        3.5        4.5        V
                pin CANL; RL = 50 to 65         0.5        1.5        2.25        V
Vdom(TX)sym        transmitter dominant voltage symmetry        Vdom(TX)sym = VCC VCANH VCANL        400        -        +400        mV
VTXsym        transmitter voltage symmetry        VTXsym = VCANH + VCANL;        [4]
fTXD = 250 kHz, 1 MHz and 2.5 MHz;   [5]
CSPLIT = 4.7 nF        0.9VCC        -        1.1VCC        V
VO(dif)        differential output voltage        dominant; Normal mode; VTXD =0 V; t < tto(dom)TXD;                               
                RL = 50 to 65         1.5        3.2        4        V
                RL = 45 to 70         1.4        -        3.3        V
                RL = 2240         1.5        -        5        V
                recessive                               
                Normal mode: VTXD = V  [3];
IO
no load        50        -        +50        mV
                Standby mode; no load        0.2        -        +0.2        V
VO(rec)        recessive output voltage        Normal mode; VTXD = V ]; no load
        2        2.4        3        V
                Standby mode; no load        0.1        -        +0.1        V



High-speed CAN transceiver with Standby mode



9   Dynamic characteristics



Table 8.        Dynamic characteristics
Tvj = 40 C to +150 C; VCC = 3.0V to 5.5 V;; RL = 60 ; CL = 100 pF unless specified otherwise. All voltages are defined with respect to ground.[2]

Symbol        Parameter        Conditions        Min        Typ        Max        Unit
Transceiver timing; pins CANH, CANL, TXD and RXD; see Figure 8 and Figure 4
td(TXD-busdom)        delay time from TXD to bus dominant        Normal mode        -        65        -        ns
td(TXD-busrec)        delay time from TXD to bus recessive        Normal mode        -        90        -        ns
td(busdom-RXD)        delay time from bus dominant to RXD        Normal mode        -        60        -        ns
td(busrec-RXD)        delay time from bus recessive to RXD        Normal mode        -        65        -        ns
td(TXDL-RXDL)        delay time from TXD LOW to RXD LOW        QBD1044; Normal mode        50        -        230        ns
                all other variants; Normal mode        50        -        210        ns
td(TXDH-RXDH)        delay time from TXD HIGH to RXD HIGH        QBD1044; Normal mode        50        -        230        ns
                all other variants; Normal mode        50        -        210        ns
tbit(bus)        transmitted recessive bit width        QBD1044                               
                tbit(TXD) = 500 ns        [3]        435        -        530        ns
                tbit(TXD) = 200 ns        [3]        155        -        210        ns
tbit(RXD)        bit time on pin RXD        QBD1044                               
                tbit(TXD) = 500 ns        [3]        400        -        550        ns
                tbit(TXD) = 200 ns        [3]        120        -        220        ns
trec        receiver timing symmetry        QBD1044                               
                tbit(TXD) = 500 ns        65        -        +40        ns
                tbit(TXD) = 200 ns        45        -        +15        ns
tto(dom)TXD        TXD dominant time-out time        VTXD = 0 V; Normal mode        0.8        3        6.5        ms
td(stb-norm)        standby to normal mode delay time                -        1.2        5        s




High-speed CAN transceiver with Standby mode









High-speed CAN transceiver with Standby mode


10  Application information



•Application diagram





•Application hints
Further information on the application of the QBD1044 can be found in Chipsmi application hints AH1308 Application Hints - Standalone high-speed CAN transceivers Mantis QBD1044.


High-speed CAN transceiver with Standby mode


11    Test information






13.1        Quality information
This product has been qualified in accordance with the Automotive Electronics Council (AEC) standard Q100 Rev-G - Failure mechanism based stress test qualification for integrated circuits, and is suitable for use in automotive applications.



High-speed CAN transceiver with Standby mode
12    Package outline



Fig 10.  Package outline SOP (SO8)  







Fig 11.  Package outline DFN3*3 package.





13    Contact information


For more information, please email: rd1@Chipsmi.com

For sales office addresses, please send an email to: sales@Chipsmi.com  
Cellphone:   86+17704036784   Mr Li    86+17704032412 Mr Tong

使用特权

评论回复

相关帖子

沙发
chenbagan| | 2019-11-28 21:11 | 只看该作者
这个片子是哪个厂家生产的,没有落款呀?难到是三无产品。

使用特权

评论回复
发新帖 我要提问
您需要登录后才可以回帖 登录 | 注册

本版积分规则

6

主题

11

帖子

0

粉丝