|
Tsu,Tco,Th,Tpd的概念 tsu : setup time, 定义输入数据讯号在 clock edge 多久前就需稳定提供的最大须求;以 正缘触发(positive edge trigger)的D flip-flop 来举例就是 D 要比 CLK 提前 tsu 时间以前就要准备好,此 flip-flop 就能于某特定之频率下正常工作. th : hold time, 定义输入数据讯号在 clock edge 后多久内仍需稳定提供的最大须求;以 正缘触发(positive edge trigger)的D flip-flop 来举例就是 D 要在 CLK 正缘触发 th 时间内仍要提供稳定之数据,此 flip-flop 就能于某特定之频率下正常工作. tco : clock output delay, 定义由 clock latch/trigger 到输出数据有效之最大延迟时间 ;以正缘触发(positive edge trigger)的D flip-flop 来举例就是Q 要在 CLK 正缘触发后至多 tco 时间就会稳定输出. tpd : propagation delay, 定义由输入脚到输出脚最大延迟时间,一般定义予 combination logic circuit 较适合. |
FPGA时序分析实用指南
1. 基本时序分析
a) 时钟周期
时钟周期分析是最简单的一个, 也是最容易理解的一个分析, 硬件对应的基本道理是寄存器输出延迟 + 逻辑操作延时 + 连线延迟 + 建立时间 必须小于时钟周期, 上面的式子即定义了最短的时钟周期, 也即信号的最高工作频率. 在一些实际情况下, 上面的式子会有一些变化, 比如考虑时钟的抖动, 不同信号状态下传输的延迟不一样, 等. 一般情况下, 分析最坏情况即可. 一般情况下, 时钟周期都是作为全局约束添加的. 在FPGA工作当中, 只需要加一个简单的时钟周期约束即可. 在实际项目当中, 可能会遇到有多个相关时钟, 在Quartus II中, 可以设置时钟之间的相对关系, 然后只需要设置基本的时钟约束即可. 可以在 Assignments à Settings à Timing Analysis Settings à Classical timing analyzer à Individual clock中设置. 对Quartus比较熟悉的也可以通过.qsf文件设置, 具体语法可以参考原有的设置, 一般情况下, 只要稍作修改就可以了. 直接编辑.qsf文件的好处是对于添加多个类似的约束比较快. 在ISE中, 可以使用 User constraints à create timing constraints, 通过图形界面设置, 也可以直接编辑.ucf文件实现. 同样, 具体语法可以参考现成的文件.
b) 输入setup
输入数据的setup要求是初学者经常搞糊涂的一个约束. 其实Quartus和ISE里边对输入setup的定义都非常清晰, 也即, 从外部来看, 只要满足时钟和数据一定的关系, FPGA内部可以保证不会出现亚稳态现象(即采在数据的沿上). 在Quartus中, 这个参数是Tsu, 其准确定义如下: The length of time for which data that feeds a register via its data or enable input(s) must be present at an input pin before the clock signal that clocks the register is asserted at the clock pin. 具体计算公式如下: tSU = + - . 确切的说, 这个定义应该是从外部看到的FPGA的时序要求. 比如Tsu为 0.5ns, 那么只要数据在0.5ns之前建立, 数据送入FPGA应该不会出现问题. Tsu可以是全局约束, 也可以是局部约束. 全局约束可以通过Assignments à Settings à Timing Analysis Settings à Classical timing analyzer中的Tsu来设置, 局部约束可以通过Assignment Editor来添加.
在ISE中, 叫做Offset In Before或者Pad to setup, 准确定义如下: The minimum time for input signals to be stable before they can be sampled correctly on the next active clock edge. 具体计算公式为: Slack = Requirement - (Data Path - Clock Path + uncertainty)
举个例子来说, 如果时序报告给出数值为4.468ns, 那么这意味着数据必须在时钟沿之前4.468ns建立, 换而言之, 只要外部送入数据在4.468ns之前建立, FPGA内部采用不会出问题. 具体的计算方法如同Altera. Offset in Before可以是全局约束, 也可以局部约束, 在Constraint Editor可以设置.
在实际使用过程中, 通常大部分情况下, 数据和时钟都是每个周期有效. 因此, 数据到底在哪个时钟周期被寄存器捕获其实并不重要, 关键是所有的相关数据(比如一个总线的数据[7:0])必须保证在一个时钟周期内采样. 因此, 如何避开会造成亚稳态以及如何使得相关的数据的Tsu尽量保持一致, 是解决数据输入FPGA的时序问题的关键. 比如, 假定输入FPGA的数据在时钟沿的1ns处发生变化, 那么Tsu应当避开这个1ns附近这个区域. 只要按照上述原则操作, 时序裕量都会是够的. 在一些特殊情况下, 比如有使能信号传递, 或者是数据的时钟周期必须严格对其, 或者是时钟抖动特别大, 则需要更加仔细的考虑时序约束.
Tco
Tco是Clock to output的延时. 道理如同Tsu, 只不过是换个角度看问题, 即作为驱动源来看待的问题. 也是从外部观察的. 在Quartus中, 这个参数是Tco, 其准确定义如下: The maximum time required to obtain a valid output at an output pin that is fed by a register after a clock signal transition on an input pin that clocks the register. 意思是相对于输入时钟管脚而言, 从寄存器输出的数据(到达pin)最长多长时间可以稳定. 具体的计算公式如下:
tCO = + + . Tco可以是局部约束, 也可以是全局约束. 具体设置方法和Tsu类似.
在ISE中, 这个参数是Offset out after或者称为Clock to Pad, 其准确定义如下: The clock-to-output, or OFFSET OUT, delay of the FPGA is the total delay encountered from the time a clock edge arrives at the input pin of the device to the time data becomes valid at the output pin of the device. 具体计算公式为Slack = Requirement – (Clock Arrival + Clock Path + Data Path + Clock Uncertainty). Offset Out After可以为全局约束或者是局部约束, 在constraint editor工具或者直接编辑UCF文件均可设置. 下面的一个报告给出了一个示例:
OFFSET = OUT 4 ns AFTER COMP "ClkIn";
Largest slack: 0.667 ns; Smallest slack: 0.667 ns; Relative Skew: 0.0 ns;
+-----------------------------------------------+-------------+-------------+
|PAD | Slack |Relative Skew|
+-----------------------------------------------+-------------+-------------+
|DataOut<0> | 0.667| 0.0 |
+-----------------------------------------------+-------------+-------------+
即要求的Tco为4ns, 实际的Tco为3.333ns, 寄存器输出的最大延迟不超过3.33ns.
在实际应用中, 还需考虑其他的一些因素, 比如时钟布线的策略, 比如星形结构, Daisy Chain结构等等. 不同的策略分析的方法有所差别, 具体的分析方法将在下篇有关FPGA芯片间通信(或着板间通信)的时序分析介绍
Altera对应的时序概念
下面主要介绍Altera对应的这些时序概念和约束方法。前面首先介绍的第一个时序概念是周期(Period),这个概念是FPGA/ASIC通用的一个概念,各方的定义相当统一,至多是描述方式不同罢了,所有的FPGA设计都首先要进行周期约束,这样做的好处除了在综合与布局布线时给出规定目标外,还能让时序分析工具考察整个设计的Fmax等。
Altera的周期定义如下图所示,公式描述如下:
图5 Altera 的 Period 示意图
Clock Period = Clk-to-out + Data Delay + Setup Time - Clk Skew
即,Tclk= Tco+ B + Tsu-(E-C) Fmax =1/Tclk
对比一下前面的介绍,只要理解了B 包含了两级寄存器之间的所有 logic 和 net 的延时就会发现与前面公式完全一致。
J Altera的其他基本时序概念
Clock Setup Time (tsu) 要想正确采样数据,就必须使数据和使能信号在有效时钟沿到达前就准备好,所谓时钟建立时间就是指时钟到达前,数据和使能已经准备好的最小时间间隔。如下图所示:
图6 tsu示意图
(注:这里定义Setup时间是站在同步时序整个路径上的,需要区别的是另一个概念Micro tsu。Micro tsu指的是一个触发器内部的建立时间,它是触发器的固有属性,一般典型值小于1~2ns。在Xilinx等的时序概念中,称Altera的Micro tsu为setup时间,用Tsetup表示,请大家区分一下。 回到Altera的时序概念,Altera的tsu定义如下: tsu = Data Delay – Clock Delay + Micro tsu)
Clock Hold Time (tH) 时钟保持时间是只能保证有效时钟沿正确采用的数据和使能信号的最小稳定时间。其定义如下图所示:
图7 tH示意图
定义的公式为: tH= Clock Delay – Data Delay + Micro tH
注:其中Micro tH是指寄存器内部的固有保持时间,同样是寄存器的一个固有参数,典型值小于1~2ns。
Clock-to-Output Delay(tco) 这个时间指的是当时钟有效沿变化后,将数据推倒同步时序路径的输出端的最小时间间隔。如下图所示:
图8 tco示意图
tco = Clock Delay + Micro tco + Data Delay
(注:其中 Micor tco也是一个寄存器的固有属性,指的是寄存器相应时钟有效沿,将数据送到输出端口的内部时间参数。它与Xilinx的时序定义中,有一个概念叫Tcko是同一个概念。)
Pin to Pin Delay (tpd) tpd指输入管脚通过纯组合逻辑到达输出管脚这段路径的延时,特别需要说明的是,要求输入到输出之间只有组合逻辑,才是tpd延时。
Slack是表示设计是否满足时序的一个称谓,正的slack表示满足时序(时序的余量),负的slack表示不满足时序(时序的欠缺量)。slack的定义和图形如下图所示。
图9 slack示意图
Slack = Required clock period – Actual clock period
Slack = Slack clock period – (Micro tCO+ Data Delay + Micro tSU)
Clock Skew指一个同源时钟到达两个不同的寄存器时钟端的时间偏移,如下图所示。
图10 clock skew示意图