一直比较困惑,就GOOGLE了一下,看好多朋友都在找,希望对大家有用<br /><br /><br />[工具使用]ADS下的分散加载文件应用实例 <br /> imjacob 发表于 2007-1-18 21:27:00 <br />ADS下的分散加载文件应用实例<br /><br />load_region_name start_address | "+"offset [attributes] [max_size]<br />{<br /> execution_region_name start_address | "+"offset [attributes][max_size]<br /> {<br /> module_select_pattern ["("<br /> ("+" input_section_attr | input_section_pattern)<br /> (][","] "+" input_section_attr | "," input_section_pattern)) *<br /> ")"]<br /> }<br />}<br /><br />load_region: 加载区,用来保存永久性数据(程序和只读变量)的区域;<br />execution_region: 执行区,程序执行时,从加载区域将数据复制到相应执行区后才能被正确执行;<br />load_region_name: 加载区域名,用于“Linker”区别不同的加载区域,最多31个字符;<br />start_address: 起始地址,指示区域的首地址;<br />+offset: 前一个加载区域尾地址+offset 做为当前的起始地址,且“offset”应为“0”或“4”的倍数;<br />attributes: 区域属性,可设置如下属性:<br /> PI 与地址无关方式存放;<br /> RELOC 重新部署,保留定位信息,以便重新定位该段到新的执行区;<br /> OVERLAY 覆盖,允许多个可执行区域在同一个地址,ADS不支持;<br /> ABSOLUTE 绝对地址(默认);<br />max_size: 该区域的大小;<br /><br />execution_region_name:执行区域名;<br />start_address: 该执行区的首地址,必须字对齐;<br />+offset: 同上;<br />attributes: 同上;<br /> PI 与地址无关,该区域的代码可任意移动后执行;<br /> OVERLAY 覆盖;<br /> ABSOLUTE 绝对地址(默认);<br /> FIXED 固定地址;<br /> UNINIT 不用初始化该区域的ZI段;<br />module_select_pattern: 目标文件滤波器,支持通配符“*”和“?”;<br /> *.o匹配所有目标,* (或“.ANY”)匹配所有目标文件和库。<br />input_section_attr: 每个input_section_attr必须跟随在“+”后;且大小写不敏感;<br /> RO-CODE 或 CODE<br /> RO-DATA 或 CONST<br /> RO或TEXT, selects both RO-CODE and RO-DATA<br /> RW-DATA<br /> RW-CODE<br /> RW 或 DATA, selects both RW-CODE and RW-DATA<br /> ZI 或 BSS<br /> ENTRY, that is a section containing an ENTRY point.<br /> FIRST,用于指定存放在一个执行区域的第一个或最后一个区域;<br /> LAST,同上;<br />input_section_pattern: 段名;<br /><br />汇编中指定段:<br /> AREA vectors, CODE, READONLY<br />C中指定段:<br />#pragma arm section [sort_type][[=]"name"]] [,sort_type="name"]*<br />sort_type: code、rwdata、rodata、zidata<br /> 如果“sort_type”指定了但没有指定“name”,那么之前的修改的段名将被恢复成默认值。<br />#pragma arm section // 恢复所有段名为默认设置。<br />应用:<br /> #pragma arm section rwdata = "SRAM",zidata = "SRAM"<br /> static OS_STK SecondTaskStk[256]; // “rwdata”“zidata”将定位在“sram”段中。<br /> #pragma arm section // 恢复默认设置<br />分散加载文件中定义如下:<br /> Exec_Sram 0x80000000 0x40000<br /> {<br /> * (sram)<br /> }<br /><br />“PI” 属性使用示例:<br />LR_1 0x010000 PI ; The first load region is at 0x010000.<br />{<br /> ER_RO +0 ; The PI attribute is inherited from parent.<br /> ; The default execution address is 0x010000, but the code can be moved.<br /> {<br /> *(+RO) ; All the RO sections go here.<br /> }<br /> ER_RW +0 ABSOLUTE ; PI attribute is overridden by ABSOLUTE.<br /> {<br /> *(+RW) ; The RW sections are placed next. They cannot be moved.<br /> }<br /> ER_ZI +0 ; ER_ZI region placed after ER_RW region.<br /> {<br /> *(+ZI) ; All the ZI sections are placed consecutively here.<br /> }<br />}<br /><br />LR_1 0x010000 ; The first load region is at 0x010000.<br />{<br /> ER_RO +0 ; Default ABSOLUTE attribute is inherited from parent. The execution address<br /> ; is 0x010000. The code and ro data cannot be moved.<br /> {<br /> *(+RO) ; All the RO sections go here.<br /> }<br /> ER_RW 0x018000 PI ; PI attribute overrides ABSOLUTE<br /> {<br /> *(+RW) ; The RW sections are placed at 0x018000 and they can be moved.<br /> }<br /> ER_ZI +0 ; ER_ZI region placed after ER_RW region.<br /> {<br /> *(+ZI) ; All the ZI sections are placed consecutively here.<br /> }<br />}<br /><br />程序中对某区域地址等的引用方法:<br />Load$$region_name$$Base Load address of the region.<br />Image$$region_name$$Base Execution address of the region.<br />Image$$region_name$$Length Execution region length in bytes (multiple of 4).<br />Image$$region_name$$Limit Address of the byte beyond the end of the execution region.<br /><br />Image$$region_name$$ZI$$Base Execution address of the ZI output section in this region.<br />Image$$region_name$$ZI$$Length Length of the ZI output section in bytes (multiple of 4).<br />Image$$region_name$$ZI$$Limit Address of the byte beyond the end of the ZI output sectionin the execution region.<br /><br />SectionName$$Base Input Address of the start of the consolidated section called SectionName.<br />SectionName$$Limit Input Address of the byte beyond the end of the consolidated section called SectionName.<br /><br />Load: 加载区,即存放地址;<br />Image: 执行区,即运行地址;<br />Base: 区首地址;<br />Limit: 区尾地址;<br />Length: 区长度;<br />region_name: RO、RW、ZI、load_region_name、execution_region_name;<br /><br />例如:<br /> “RAM1”区域的首地址: Image$$RAM1$$Base<br /> 上例中“sram”段首地址: sram$$Base<br /><br />汇编引用示例:<br /> IMPORT |Load$$Exec_RAM1$$Base| // Exec_RAM1 为“RW”段<br /> IMPORT |Image$$Exec_RAM1$$Base|<br /> IMPORT |Image$$Exec_RAM1$$Length|<br /> IMPORT |Image$$Exec_RAM1$$Limit|<br /><br /> LDR R0, =|Load$$Exec_RAM1$$Base|<br /> LDR R1, =|Image$$Exec_RAM1$$Base|<br /> LDR R2, =|Image$$Exec_RAM1$$Limit|<br />0<br /> CMP R1, R2<br /> LDRCC R3, [R0], #4<br /> STRCC R3, [R1], #4<br /> BCC %b0<br />C 引用:<br />extern unsigned char Load$$Exec_RAM1$$Base;<br />extern unsigned char Image$$Exec_RAM1$$Base;<br />extern unsigned char Image$$Exec_RAM1$$Length;<br /><br />void MoveRO(void)<br />{<br /> unsigned char * psrc, *pdst;<br /> unsigned int count;<br /><br /> count = (unsigned int) &Image$$Exec_RAM1$$Length;<br /> psrc = (unsigned char *)&Load$$Exec_RAM1$$Base;<br /> pdst = (unsigned char *)&Image$$Exec_RAM1$$Base;<br /><br /> while (count--) {<br /> *pdst++ = *psrc++;<br /> }<br />}<br /><br />加载文件示例一:<br /> 起始地址 大小<br />ROM: 0x00000000 256K ;0x1fc 保留为加密字,程序在ROM中运行;<br />RAM 0x40000000 16K ;用于全局变量及任务堆栈;<br />SRAM 0x80000000 512K ;SRAM速度慢,主要用于存放大的数据表;<br /><br />LOAD_ROM1 0x00000000 0x1f8 ; 指定该加载区域首地址、大小<br />{<br /> EXEC_ROM1 +0 0x1f8 ; 没有前一加载区域,所以该执行区域首地址为加载去首地址<br /> ; 并指定该区域长度<br /> {<br /> Startup.o (vectors, +FIRST) ; 目标文件的“vectors”段放在该执行区域的第一段<br /> irq.o (+RO) ; 目标文件的所有“RO”段放在该执行区域<br /> }<br />}<br /><br />LOAD_ROM2 0x00000200 ; 第二个加载区域<br />{<br /> EXEC_ROM2 +0 0x3e600<br /> {<br /> * (+RO) ; 所有目标文件和库文件中的“RO”段存放在该区域<br /> }<br /><br /> RAM1 0x40000000 0x4000<br /> {<br /> * (+RW, +ZI) ; 所有目标文件和库文件的“RW”和“ZI”段存放在该区域<br /> }<br /><br /> SRAM2 0x80000000 0x80000<br /> {<br /> * (sram) ; 所有目标文件中的“sram”段存放在该区域<br /> }<br />}<br /><br />示例二:<br /> “iap.o”定义在“Exec_RAM1”中运行,所以设置“PI”属性;<br /> 在调用“iap.c”中函数之前应该将其从“Load$$Exec_IAP$$Base”复制到指定的“Exec_RAM1”区域;<br /><br />Load_region1 0x00000000 0x1fc<br />{<br /> EXEC_ROM1 +0<br /> {<br /> Startup.o (vectors, +FIRST)<br /> irq.o (+RO)<br /> }<br />}<br /><br />Load_region2 0x00000200 0x3e600<br />{<br /> EXEC_ROM2 +0<br /> {<br /> * (+RO)<br /> }<br /><br /> Exec_IAP +0 PI // 可能引起链接器未使用该属性警告,忽略<br /> {<br /> iap.o (+RO)<br /> }<br /><br /> Exec_RAM1 0x40000000 0x4000<br /> {<br /> * (+RW, +ZI)<br /> }<br /><br /> Exec_Sram 0x80000000 0x40000<br /> {<br /> * (SRAM)<br /> }<br />}<br /><br />// 移动“IAP.o”中的所有函数到“ImageExecIAPBase”加载区,并调用其中的函数<br />extern unsigned char Load$$Exec_IAP$$Base;<br />extern unsigned char Image$$Exec_IAP$$Length;<br /><br />#define ImageExecIAPBase (0x40000000+0x1000) // 加载区首址<br /><br />void MoveIAPRO(void)<br />{<br /> unsigned char * psrc, *pdst;<br /> unsigned int count;<br /><br /> count = (unsigned int) &Image$$Exec_IAP$$Length;<br /> psrc = (unsigned char *)&Load$$Exec_IAP$$Base;<br /> pdst = (unsigned char *)ImageExecIAPBase;<br /><br /> while (count--) {<br /> *pdst++ = *psrc++;<br /> }<br />}<br /><br />// 调用“IAP.O”中的某函数<br /> {<br /> void (* pfnIAPWrite)(unsigned long, int);<br /><br /> pfnIAPWrite = (void (*)(unsigned long, int))<br /> (ImageExecIAPBase + <br /> (unsigned int)IAPWrite - // 被调用函数名<br /> (unsigned int)&Load$$Exec_IAP$$Base);<br /><br /> pfnIAPWrite((int)((CUPDATA *)CODESTARTADDR)->data,<br /> ((CUPDATA *)CODESTARTADDR)->length);<br /> }<br /> <br /> |
|