工程里面的头文件 2410Init.s包括了板子上电后的初始话,具体有几个步骤:<br /><br />讲述S3C2410启动程序设计<br /><br />1. 屏蔽所有中断,关看门狗。<br /><br />2. 根据工作频率设置PLL寄存器<br /><br />3. 初始化存储控制相关寄存器<br /><br />4. 初始化各模式下的栈指针<br /><br />5. 设置缺省中断处理函数<br /><br />6. 将数据段拷贝到RAM中,将零初始化数据段清零<br /><br />7. 跳转到C语言Main入口函数中<br /><br />要看懂这个头文件是比较难的,我跟DVD视频的教程看了两遍,弄懂了一些,视频上讲的是 ARM7 S3C44B0的 Init.s 但我觉得和2410的差不多。我将这个程序注释了一下。可能有些地方不是很正确,只提供参考。<br /><br />;=========================================<br />; NAME: 2410INIT.S<br />; DESC: C start up codes<br />; Configure memory, ISR ,stacks<br />; Initialize C-variables<br />; HISTORY:<br />; 2002.02.25:kwtark: ver 0.0<br />; 2002.03.20: purnnamu: Add some functions for testing STOP,POWER_OFF mode<br />; 2002.04.10:SJS:sub interrupt disable 0x3ff -> 0x7ff <br />; 2002.11.29:Kong: DCD BANKSIZE Resiger 0x32 -> 0xb2 (ARM core burst enable)<br />;=========================================<br /><br /> INCLUDE option.inc<br /> INCLUDE memcfg.inc<br /> INCLUDE 2410addr.inc<br /><br />BIT_SELFREFRESH EQU (1<<22)<br /><br />;下面是对arm处理器模式寄存器对应值的常数定义,arm处理器中有一个CPSR程序状态寄存器 它的后五位决定目前的处理器模式<br />; pre-defined constants<br />USERMODE EQU 0x10<br />FIQMODE EQU 0x11<br />IRQMODE EQU 0x12<br />SVCMODE EQU 0x13<br />ABORTMODE EQU 0x17<br />UNDEFMODE EQU 0x1b<br />MODEMASK EQU 0x1f<br />NOINT EQU 0xc0<br /><br />;The location of stacks<br />UserStack EQU (_STACK_BASEADDRESS-0x3800) ;0x33ff4800 ~ <br />SVCStack EQU (_STACK_BASEADDRESS-0x2800) ;0x33ff5800 ~<br />UndefStack EQU (_STACK_BASEADDRESS-0x2400) ;0x33ff5c00 ~<br />AbortStack EQU (_STACK_BASEADDRESS-0x2000) ;0x33ff6000 ~<br />IRQStack EQU (_STACK_BASEADDRESS-0x1000) ;0x33ff7000 ~<br />FIQStack EQU (_STACK_BASEADDRESS-0x0) ;0x33ff8000 ~ <br /><br />;check if tasm.exe is used. <br />;arm处理器有两种工作状态 1.arm:32位 这种工作状态下执行字对准的arm指令 2.Thumb:16位 这种工作状;态执行半字对准的Thumb指令 <br />;因为处理器分为16位 32位两种工作状态 程序的编译器也是分16位和32两种编译方式 所以下面的程序用;于根据处理器工作状态确定编译器编译方式 <br />;code16伪指令指示汇编编译器后面的指令为16位的thumb指令 <br />;code32伪指令指示汇编编译器后面的指令为32位的arm指令 <br />;这段是为了统一目前的处理器工作状态和软件编译方式(16位编译环境使用tasm.exe编译<br />;Check if tasm.exe(armasm -16 ...@ADS 1.0) is used.<br /> GBLL THUMBCODE<br /> [ {CONFIG} = 16 ;if config==16 这里表示你的目前处于领先地16位编译方式<br />THUMBCODE SETL {TRUE};设置THUMBCODE 为 true<br /> CODE32;转入32位编译模式<br /> | ;else <br />THUMBCODE SETL {FALSE};设置THUMBCODE 为 false<br /> ]<br /><br /> MACRO<br /> MOV_PC_LR<br /> [ THUMBCODE<br /> bx lr<br /> |<br /> mov pc,lr<br /> ]<br /> MEND<br /><br /> MACRO<br /> MOVEQ_PC_LR<br /> [ THUMBCODE<br /> bxeq lr<br /> |<br /> moveq pc,lr<br /> ]<br /> MEND<br /><br />;注意下面这段程序是个宏定义 很多人对这段程序不理解 我再次强调这是一个宏定义 所以大家要注意了<br />;下面包含的HandlerXXX HANDLER HandleXXX将都被下面这段程序展开 <br />;这段程序用于把中断服务程序的首地址装载到pc中,有人称之为“加载程序”。 <br />;本初始化程序定义了一个数据区(在文件最后),34个字空间,存放相应中断服务程序的首地址。每个字<br />;空间都有一个标号,以Handle***命名。 <br />;在向量中断模式下使用“加载程序”来执行中断服务程序。 <br />;这里就必须讲一下向量中断模式和非向量中断模式的概念 <br />;向量中断模式是当cpu读取位于0x18处的IRQ中断指令的时候,系统自动读取对应于该中断源确定地址上的;<br />;指令取代0x18处的指令,通过跳转指令系统就直接跳转到对应地址 <br />;函数中 节省了中断处理时间提高了中断处理速度标 例如 ADC中断的向量地址为0xC0,则在0xC0处放如下<br />;代码:ldr PC,=HandlerADC 当ADC中断产生的时候系统会 <br />;自动跳转到HandlerADC函数中 <br />;非向量中断模式处理方式是一种传统的中断处理方法,当系统产生中断的时候,系统将interrupt <br />; pending寄存器中对应标志位置位 然后跳转到位于0x18处的统一中断 <br />;函数中 该函数通过读取interrupt pending寄存器中对应标志位 来判断中断源 并根据优先级关系再跳到<br />;对应中断源的处理代码中<br /> MACRO<br />$HandlerLabel HANDLER $HandleLabel<br />;HandlerLabel为中断服务入口地址<br />$HandlerLabel<br /> sub sp,sp,#4 ; Decrement sp(to store jump address)<br /> ;将要使用的r0寄存器入栈<br /> stmfd sp!,{r0} ; pUSH the work register to stack(lr does't push because it return to original address)<br /> ldr r0,=$HandleLabel; load the address of HandleXXX to r0<br /> ldr r0,[r0] ; load the contents(service routine start address) of HandleXXX<br /> ;将对应的中断函数首地址入栈<br /> str r0,[sp,#4] ;store the contents(ISR) of HandleXXX to stack<br /> ;将中断函数首地址出栈 放入程序指针中 系统将跳转到对应中断处理函数<br /> ldmfd sp!,{r0,pc} ; pOP the work register and pc(jump to ISR)<br /> MEND<br /> <br />;一个arm由RO,RW,ZI三个断组成 其中RO为代码段,RW是已经初始化的全局变量,ZI是未初始化的全局变量<br />;(对于GNU工具 对应的概念是TEXT ,DATA,BSS)bootloader <br />;bootloader要将RW段复制到ram中并将ZI段清零 编译器使用下列段来记录各段的起始和结束地址<br />; |Image$$RO$$Base| ; RO段起始地址 <br />; |Image$$RO$$Limit| ; RO段结束地址加1 <br />; |Image$$RW$$Base| ; RW段起始地址 <br />; |Image$$RW$$Limit| ; RW段结束地址加1 <br />; |Image$$ZI$$Base| ; ZI段起始地址 <br />; |Image$$ZI$$Limit| ; ZI段结束地址加1 <br />;这些标号的值是通过编译器的设定来确定的 如编译软件中对ro-base和rw-base的设定,例如 ro-;base=0xc000000 rw-base=0xc5f0000<br /> IMPORT |Image$$RO$$Limit| ; End of ROM code (=start of ROM data)<br /> IMPORT |Image$$RW$$Base| ; Base of RAM to initialise<br /> IMPORT |Image$$ZI$$Base| ; Base and limit of area<br /> IMPORT |Image$$ZI$$Limit| ; to zero initialise<br /><br /> <br /> <br /> IMPORT Main ; The main entry of mon program <br /> <br /> AREA Init,CODE,READONLY<br />;异常中断矢量表(每个表项占4个字节) 下面是中断向量表 一旦系统运行时有中断发生 即使移植了操作;系统 如linux 处理器已经把控制权交给了操作系统 一旦发生中断 处理器还是会跳转到从0x0开始 <br />;中断向量表中某个中断表项(依据中断类型)开始执行 <br />;具体中断向量布局请参考s3c44b0 spec 例如 adc中断向量为 0x000000c0下面对应表中第49项位置 向量地址0x0+4*(49-1)=0x000000c0 <br /> ENTRY <br />;板子上电和复位后 程序开始从位于0x0处开始执行硬件刚刚上电复位后 程序从这里开始执行跳转到标?<br />;为ResetHandler处执行<br /> ;1)The code, which converts to Big-endian, should be in little endian code.<br /> ;2)The following little endian code will be compiled in Big-Endian mode. <br /> ; The code byte order should be changed as the memory bus width.<br /> ;3)The pseudo instruction,DCD can't be used here because the linker generates error.<br /> ;总线宽度判?<br /> ; DCD用于分配一段字内存单片,并用后面的伪指令初始化<br /> ;分配字节由expr 个数决定<br /> ASSERT : DEF:ENDIAN_CHANGE<br /> [ ENDIAN_CHANGE<br /> ASSERT : DEF:ENTRY_BUS_WIDTH<br /> ][ ENTRY_BUS_WIDTH=32<br /> b ChangeBigEndian ; DCD 0xea000007 <br /> ]<br /> <br /> [ ENTRY_BUS_WIDTH=16<br /> andeq r14,r7,r0,lsl #20 ; DCD 0x0007ea00<br /> ]<br /> <br /> [ ENTRY_BUS_WIDTH=8<br /> streq r0,][r0,-r10,ror #1] ; DCD 0x070000ea<br /> ]<br /> |<br /> b ResetHandler <br /> ]<br /> b HandlerUndef ;handler for Undefined mode<br /> b HandlerSWI ;handler for SWI interrupt<br /> b HandlerPabort ;handler for PAbort<br /> b HandlerDabort ;handler for DAbort<br /> b . ;reserved 0x14<br /> b HandlerIRQ ;handler for IRQ interrupt <br /> b HandlerFIQ ;handler for FIQ interrupt<br /><br />;@0x20<br /> b EnterPWDN<br />;大小端判断<br />ChangeBigEndian<br />;@0x24<br /> [ ENTRY_BUS_WIDTH=32<br /> DCD 0xee110f10 ;0xee110f10 => mrc p15,0,r0,c1,c0,0<br /> DCD 0xe3800080 ;0xe3800080 => orr r0,r0,#0x80; //Big-endian<br /> DCD 0xee010f10 ;0xee010f10 => mcr p15,0,r0,c1,c0,0<br /> ]<br /> [ ENTRY_BUS_WIDTH=16<br /> DCD 0x0f10ee11<br /> DCD 0x0080e380 <br /> DCD 0x0f10ee01 <br /> ]<br /> [ ENTRY_BUS_WIDTH=8<br /> DCD 0x100f11ee <br /> DCD 0x800080e3 <br /> DCD 0x100f01ee <br /> ]<br /> DCD 0xffffffff ;swinv 0xffffff is similar with NOP and run well in both endian mode. <br /> DCD 0xffffffff<br /> DCD 0xffffffff<br /> DCD 0xffffffff<br /> DCD 0xffffffff<br /> b ResetHandler<br /> <br />;进入掉电模式功能<br />; 1. SDRAM 必须在自刷新模式.<br />; 2. 所有中断必须屏蔽 for SDRAM/DRAM self-refresh.<br />; 3. LCD 关闭for SDRAM/DRAM self-refresh.<br />; 4. The I-cache 可能需要开启. <br />; 5. The location of the following code may have not to be changed.<br /><br />;void EnterPWDN(int CLKCON); <br />EnterPWDN <br /> mov r2,r0 ;r2=rCLKCON<br /> tst r0,#0x8 ; pOWER_OFF mode?<br /> bne ENTER_POWER_OFF<br /><br />ENTER_STOP <br /> ldr r0,=REFRESH <br /> ldr r3,[r0] ;r3=rREFRESH <br /> mov r1, r3<br /> orr r1, r1, #BIT_SELFREFRESH<br /> str r1, [r0] ;Enable SDRAM self-refresh<br /><br /> mov r1,#16 ;wait until self-refresh is issued. may not be needed.<br />0 subs r1,r1,#1<br /> bne %B0<br /><br /> ldr r0,=CLKCON ;enter STOP mode.<br /> str r2,[r0] <br /><br /> mov r1,#32<br />0 subs r1,r1,#1 ;1) wait until the STOP mode is in effect.<br /> bne %B0 ;2) Or wait here until the CPU&Peripherals will be turned-off<br /> ; Entering POWER_OFF mode, only the reset by wake-up is available.<br /><br /> ldr r0,=REFRESH ;exit from SDRAM self refresh mode.<br /> str r3,[r0]<br /> <br /> MOV_PC_LR<br /><br />ENTER_POWER_OFF <br /> ;NOTE.<br /> ;1) rGSTATUS3 should have the return address after wake-up from POWER_OFF mode.<br /> <br /> ldr r0,=REFRESH <br /> ldr r1,[r0] ;r1=rREFRESH <br /> orr r1, r1, #BIT_SELFREFRESH<br /> str r1, [r0] ;Enable SDRAM self-refresh<br /><br /> mov r1,#16 ;Wait until self-refresh is issued,which may not be needed.<br />0 subs r1,r1,#1<br /> bne %B0<br /><br /> ldr r1,=MISCCR<br /> ldr r0,[r1]<br /> orr r0,r0,#(7<<17) ;Make sure that SCLK0:SCLK->0, SCLK1:SCLK->0, SCKE='L' during boot-up <br /> str r0,[r1]<br /><br /> ldr r0,=CLKCON<br /> str r2,[r0] <br /><br /> b . ;CPU will die here.<br /> <br /><br />WAKEUP_POWER_OFF<br /> ;Release SCLKn after wake-up from the POWER_OFF mode.<br /> ldr r1,=MISCCR<br /> ldr r0,[r1]<br /> bic r0,r0,#(7<<17) ;SCLK0:0->SCLK, SCLK1:0->SCLK, SCKE: l->H<br /> str r0,[r1]<br /> <br /> ;Set memory control registers<br /> ldr r0,=SMRDATA<br /> ldr r1,=BWSCON ;BWSCON Address<br /> add r2, r0, #52 ;End address of SMRDATA<br />0 <br /> ldr r3, [r0], #4 <br /> str r3, [r1], #4 <br /> cmp r2, r0 <br /> bne %B0<br /><br /> mov r1,#256<br />0 subs r1,r1,#1 ;1) wait until the SelfRefresh is released.<br /> bne %B0 <br /><br /> ldr r1,=GSTATUS3 ;GSTATUS3 has the start address just after POWER_OFF wake-up<br /> ldr r0,[r1]<br /> mov pc,r0<br /><br /> LTORG<br /> ;下面是具体的中断处理函数跳转的宏,通过上面的$HandlerLabel的宏定义展开后跳转到对应的中断处理;函数(对于向量中断)<br />HandlerFIQ HANDLER HandleFIQ<br />HandlerIRQ HANDLER HandleIRQ<br />HandlerUndef HANDLER HandleUndef<br />HandlerSWI HANDLER HandleSWI<br />HandlerDabort HANDLER HandleDabort<br />HandlerPabort HANDLER HandlePabort<br /><br />;下面这段程序是用来处理非向量中断,具体判断I_ISPR中各位是否置1 置1表示目前此中断等待响应(每次只能有一位置1),从最高优先级中断位开始判断,检测到等待服务 <br />;中断就将pc置为中断服务函数首地址<br />IsrIRQ <br /> sub sp,sp,#4 ;预留返回指针的存储位置<br /> stmfd sp!,{r8-r9} <br /> <br /> ldr r9,=INTOFFSET<br /> ldr r9,[r9];载入I_ISR<br /> ldr r8,=HandleEINT0<br /> add r8,r8,r9,lsl #2<br /> ldr r8,[r8]<br /> str r8,[sp,#8]<br /> ldmfd sp!,{r8-r9,pc}<br /><br />;=======<br />; ENTRY <br />;=======<br />;扳子上电和复位后 程序开始从位于0x0执行b ResetHandler 程序从跳转到这里执行 <br />;板子上电复位后 执行几个步骤这里通过标号在注释中加1,2,3....标示 标号表示执行顺序 <br />;1.禁止看门狗 屏蔽所有中断<br />ResetHandler<br /> ldr r0,=WTCON ;watch dog disable <br /> ldr r1,=0x0 <br /> str r1,[r0]<br /><br /> ldr r0,=INTMSK<br /> ldr r1,=0xffffffff ;all interrupt disable<br /> str r1,[r0]<br /><br /> ldr r0,=INTSUBMSK<br /> ldr r1,=0x7ff ;all sub interrupt disable, 2002/04/10<br /> str r1,[r0]<br /><br /> [ {FALSE}<br /> ; rGPFDAT = (rGPFDAT & ~(0xf<<4)) | ((~data & 0xf)<<4); <br /> ; Led_Display<br /> ldr r0,=GPFCON<br /> ldr r1,=0x5500 <br /> str r1,][r0]<br /> ldr r0,=GPFDAT<br /> ldr r1,=0x10<br /> str r1,[r0]<br /> ]<br />;2.根据工作频率设置pll <br />;这里介绍一下计算公式 <br />;Fpllo=(m*Fin)/(p*2^s) <br />;m=MDIV+8,p=PDIV+2,s=SDIV <br />;Fpllo必须大于20Mhz小于66Mhz <br />;Fpllo*2^s必须小于170Mhz <br />;如下面的PLLCON设定中的M_DIV P_DIV S_DIV是取自option.h中 <br />;#elif (MCLK==40000000) <br />;#define PLL_M (0x48) <br />;#define PLL_P (0x3) <br />;#define PLL_S (0x2) <br />;所以m=MDIV+8=80,p=PDIV+2=5,s=SDIV=2 <br />;硬件使用晶振为10Mhz,即Fin=10Mhz <br />;Fpllo=80*10/5*2^2=40Mhz<br /> ;To reduce PLL lock time, adjust the LOCKTIME register. <br /> ldr r0,=LOCKTIME<br /> ldr r1,=0xffffff<br /> str r1,[r0]<br /> <br /> [ PLL_ON_START<br /> ;Configure MPLL<br /> ldr r0,=MPLLCON <br /> ldr r1,=((M_MDIV<<12)+(M_PDIV<<4)+M_SDIV) ;Fin=12MHz,Fout=50MHz<br /> str r1,][r0]<br /> ]<br /><br /> ;Check if the boot is caused by the wake-up from POWER_OFF mode.<br /> ldr r1,=GSTATUS2<br /> ldr r0,[r1]<br /> tst r0,#0x2<br /> ;In case of the wake-up from POWER_OFF mode, go to POWER_OFF_WAKEUP handler. <br /> bne WAKEUP_POWER_OFF<br /><br /> EXPORT StartPointAfterPowerOffWakeUp<br />StartPointAfterPowerOffWakeUp<br />;3.置存储相关寄存器的程序 <br />;这是设置SDRAM,flash ROM 存储器连接和工作时序的程序,片选定义的程序 <br />;SMRDATA map在下面的程序中定义 <br />;SMRDATA中涉及的值请参考memcfg.s程序 <br />;具体寄存器各位含义请参考s3c44b0 spec<br /> ;Set memory control registers<br /> ldr r0,=SMRDATA<br /> ldr r1,=BWSCON ;BWSCON Address<br /> add r2, r0, #52 ;End address of SMRDATA<br />0 <br /> ldr r3, [r0], #4 <br /> str r3, [r1], #4 <br /> cmp r2, r0 <br /> bne %B0<br /> <br /> ;Initialize stacks<br /> bl InitStacks<br />;5.设置缺省中断处理函数 <br /> ; Setup IRQ handler<br /> ldr r0,=HandleIRQ ;This routine is needed<br /> ldr r1,=IsrIRQ ;if there isn't 'subs pc,lr,#4' at 0x18, 0x1c<br /> str r1,[r0]<br /><br /> ;Copy and paste RW data/zero initialized data<br /> ldr r0, =|Image$$RO$$Limit| ; Get pointer to ROM data<br /> ldr r1, =|Image$$RW$$Base| ; and RAM copy<br /> ldr r3, =|Image$$ZI$$Base| <br />;6.将数据段拷贝到ram中 将零初始化数据段清零 跳入C语言的main函数执行 到这步结束bootloader初步引导结束 <br /> ;Zero init base => top of initialised data<br /> cmp r0, r1 ; Check that they are different<br /> beq %F2<br />1 <br /> cmp r1, r3 ; Copy init data<br /> ldrcc r2, [r0], #4 ;--> LDRCC r2, [r0] + ADD r0, r0, #4 <br /> strcc r2, [r1], #4 ;--> STRCC r2, [r1] + ADD r1, r1, #4<br /> bcc %B1 ;r1 < r3 继续循环<br />2 <br /> ldr r1, =|Image$$ZI$$Limit| ; Top of zero init segment<br /> mov r2, #0<br />3 <br /> cmp r3, r1 ; Zero init<br /> strcc r2, [r3], #4<br /> bcc %B3<br /><br /> <br /><br /> [ : lNOT:THUMBCODE<br /> bl Main ; Don't use main() because ......<br /> b . <br /> ]<br /><br /> [ THUMBCODE ;for start-up code for Thumb mode<br /> orr lr,pc,#1<br /> bx lr<br /> CODE16<br /> bl Main ; Don't use main() because ......<br /> b .<br /> CODE32<br /> ]<br /><br /><br />;function initializing stacks<br />InitStacks<br /> ; Don't use DRAM,such as stmfd,ldmfd......<br /> ;SVCstack is initialized before<br /> ;Under toolkit ver 2.5, 'msr cpsr,r1' can be used instead of 'msr cpsr_cxsf,r1'<br /> mrs r0,cpsr<br /> bic r0,r0,#MODEMASK ;位清零指令,清r0,再附给ro<br /> orr r1,r0,#UNDEFMODE|NOINT<br /> msr cpsr_cxsf,r1 ;UndefMode<br /> ldr sp,=UndefStack<br /> <br /> orr r1,r0,#ABORTMODE|NOINT<br /> msr cpsr_cxsf,r1 ;AbortMode<br /> ldr sp,=AbortStack<br /><br /> orr r1,r0,#IRQMODE|NOINT<br /> msr cpsr_cxsf,r1 ;IRQMode<br /> ldr sp,=IRQStack<br /> <br /> orr r1,r0,#FIQMODE|NOINT<br /> msr cpsr_cxsf,r1 ;FIQMode<br /> ldr sp,=FIQStack<br /><br /> bic r0,r0,#MODEMASK|NOINT<br /> orr r1,r0,#SVCMODE<br /> msr cpsr_cxsf,r1 ;SVCMode<br /> ldr sp,=SVCStack<br /> <br /> ;USER mode has not be initialized.<br /> <br /> mov pc,lr <br /> ;The LR register won't be valid if the current mode is not SVC mode.<br /> <br />;这是上面提到的对存储寄存器初始化的数据map<br /> LTORG<br /><br />SMRDATA DATA<br />; Memory configuration should be optimized for best performance <br />; The following parameter is not optimized. <br />; Memory access cycle parameter strategy<br />; 1) The memory settings is safe parameters even at HCLK='75Mhz'.<br />; 2) SDRAM refresh period is for HCLK='75Mhz'. <br /><br /> DCD (0+(B1_BWSCON<<4)+(B2_BWSCON<<8)+(B3_BWSCON<<12)+(B4_BWSCON<<16)+(B5_BWSCON<<20)+(B6_BWSCON<<24)+(B7_BWSCON<<28))<br /> DCD ((B0_Tacs<<13)+(B0_Tcos<<11)+(B0_Tacc<<8)+(B0_Tcoh<<6)+(B0_Tah<<4)+(B0_Tacp<<2)+(B0_PMC)) ;GCS0<br /> DCD ((B1_Tacs<<13)+(B1_Tcos<<11)+(B1_Tacc<<8)+(B1_Tcoh<<6)+(B1_Tah<<4)+(B1_Tacp<<2)+(B1_PMC)) ;GCS1 <br /> DCD ((B2_Tacs<<13)+(B2_Tcos<<11)+(B2_Tacc<<8)+(B2_Tcoh<<6)+(B2_Tah<<4)+(B2_Tacp<<2)+(B2_PMC)) ;GCS2<br /> DCD ((B3_Tacs<<13)+(B3_Tcos<<11)+(B3_Tacc<<8)+(B3_Tcoh<<6)+(B3_Tah<<4)+(B3_Tacp<<2)+(B3_PMC)) ;GCS3<br /> DCD ((B4_Tacs<<13)+(B4_Tcos<<11)+(B4_Tacc<<8)+(B4_Tcoh<<6)+(B4_Tah<<4)+(B4_Tacp<<2)+(B4_PMC)) ;GCS4<br /> DCD ((B5_Tacs<<13)+(B5_Tcos<<11)+(B5_Tacc<<8)+(B5_Tcoh<<6)+(B5_Tah<<4)+(B5_Tacp<<2)+(B5_PMC)) ;GCS5<br /> DCD ((B6_MT<<15)+(B6_Trcd<<2)+(B6_SCAN)) ;GCS6<br /> DCD ((B7_MT<<15)+(B7_Trcd<<2)+(B7_SCAN)) ;GCS7<br />; DCD ((REFEN<<23)+(TREFMD<<22)+(Trp<<20)+(Trc<<18)+(Tchr<<16)+REFCNT) ;Tchr not used bit<br /> DCD ((REFEN<<23)+(TREFMD<<22)+(Trp<<20)+(Trc<<18)+REFCNT) ;设置刷新周期 <br /><br />; DCD 0x32 ;SCLK power saving mode, ARM core burst disable, BANKSIZE 128M/128M<br /> DCD 0xb2 ;SCLK power saving mode, ARM core burst enable , BANKSIZE 128M/128M - 11/29/2002<br /><br /> DCD 0x30 ;MRSR6 CL='3clk'<br /> DCD 0x30 ;MRSR7<br />; DCD 0x20 ;MRSR6 CL='2clk'<br />; DCD 0x20 ;MRSR7<br /><br /> ALIGN<br /><br /><br /> AREA RamData, DATA, READWRITE<br />;这里将中断异常向量建立在sdram中<br /> ^ _ISR_STARTADDRESS<br />HandleReset # 4<br />HandleUndef # 4<br />HandleSWI # 4<br />HandlePabort # 4<br />HandleDabort # 4<br />HandleReserved # 4<br />HandleIRQ # 4<br />HandleFIQ # 4<br /><br />; Don't use the label 'IntVectorTable',<br />;The value of IntVectorTable is different with the address you think it may be.<br />;IntVectorTable<br />HandleEINT0 # 4<br />HandleEINT1 # 4<br />HandleEINT2 # 4<br />HandleEINT3 # 4<br />HandleEINT4_7 # 4<br />HandleEINT8_23 # 4<br />HandleRSV6 # 4<br />HandleBATFLT # 4<br />HandleTICK # 4<br />HandleWDT # 4<br />HandleTIMER0 # 4<br />HandleTIMER1 # 4<br />HandleTIMER2 # 4<br />HandleTIMER3 # 4<br />HandleTIMER4 # 4<br />HandleUART2 # 4<br />HandleLCD # 4<br />HandleDMA0 # 4<br />HandleDMA1 # 4<br />HandleDMA2 # 4<br />HandleDMA3 # 4<br />HandleMMC # 4<br />HandleSPI0 # 4<br />HandleUART1 # 4<br />HandleRSV24 # 4<br />HandleUSBD # 4<br />HandleUSBH # 4<br />HandleIIC # 4<br />HandleUART0 # 4<br />HandleSPI1 # 4<br />HandleRTC # 4<br />HandleADC # 4<br /><br /> END<br /><br /> |
|