- #coding:utf-8
- #0导入模块 ,生成模拟数据集
- import tensorflow as tf
- import numpy as np
- import matplotlib.pyplot as plt
- BATCH_SIZE = 30
- seed = 2
- #基于seed产生随机数
- rdm = np.random.RandomState(seed)
- #随机数返回300行2列的矩阵,表示300组坐标点(x0,x1)作为输入数据集
- X = rdm.randn(300,2)
- #从X这个300行2列的矩阵中取出一行,判断如果两个坐标的平方和小于2,给Y赋值1,其余赋值0
- #作为输入数据集的标签(正确答案)
- Y_ = [int(x0*x0 + x1*x1 <2) for (x0,x1) in X]
- #遍历Y中的每个元素,1赋值'red'其余赋值'blue',这样可视化显示时人可以直观区分
- Y_c = [['red' if y else 'blue'] for y in Y_]
- #对数据集X和标签Y进行shape整理,第一个元素为-1表示,随第二个参数计算得到,第二个元素表示多少列,把X整理为n行2列,把Y整理为n行1列
- X = np.vstack(X).reshape(-1,2)
- Y_ = np.vstack(Y_).reshape(-1,1)
- print (X)
- print (Y_)
- print (Y_c)
- #用plt.scatter画出数据集X各行中第0列元素和第1列元素的点即各行的(x0,x1),用各行Y_c对应的值表示颜色(c是color的缩写)
- plt.scatter(X[:,0], X[:,1], c=np.squeeze(Y_c))
- plt.show()
- #定义神经网络的输入、参数和输出,定义前向传播过程
- def get_weight(shape, regularizer):
- w = tf.Variable(tf.random_normal(shape), dtype=tf.float32)
- tf.add_to_collection('losses', tf.contrib.layers.l2_regularizer(regularizer)(w))
- return w
- def get_bias(shape):
- b = tf.Variable(tf.constant(0.01, shape=shape))
- return b
-
- x = tf.placeholder(tf.float32, shape=(None, 2))
- y_ = tf.placeholder(tf.float32, shape=(None, 1))
- w1 = get_weight([2,11], 0.01)
- b1 = get_bias([11])
- y1 = tf.nn.relu(tf.matmul(x, w1)+b1)
- w2 = get_weight([11,1], 0.01)
- b2 = get_bias([1])
- y = tf.matmul(y1, w2)+b2
- #定义损失函数
- loss_mse = tf.reduce_mean(tf.square(y-y_))
- loss_total = loss_mse + tf.add_n(tf.get_collection('losses'))
- #定义反向传播方法:不含正则化
- train_step = tf.train.AdamOptimizer(0.0001).minimize(loss_mse)
- with tf.Session() as sess:
- init_op = tf.global_variables_initializer()
- sess.run(init_op)
- STEPS = 40000
- for i in range(STEPS):
- start = (i*BATCH_SIZE) % 300
- end = start + BATCH_SIZE
- sess.run(train_step, feed_dict={x:X[start:end], y_:Y_[start:end]})
- if i % 2000 == 0:
- loss_mse_v = sess.run(loss_mse, feed_dict={x:X, y_:Y_})
- print("After %d steps, loss is: %f" %(i, loss_mse_v))
- #xx在-3到3之间以步长为0.01,yy在-3到3之间以步长0.01,生成二维网格坐标点
- xx, yy = np.mgrid[-3:3:.01, -3:3:.01]
- #将xx , yy拉直,并合并成一个2列的矩阵,得到一个网格坐标点的集合
- grid = np.c_[xx.ravel(), yy.ravel()]
- #将网格坐标点喂入神经网络 ,probs为输出
- probs = sess.run(y, feed_dict={x:grid})
- #probs的shape调整成xx的样子
- probs = probs.reshape(xx.shape)
- print ("w1:\n",sess.run(w1))
- print ("b1:\n",sess.run(b1))
- print ("w2:\n",sess.run(w2))
- print ("b2:\n",sess.run(b2))
- plt.scatter(X[:,0], X[:,1], c=np.squeeze(Y_c))
- plt.contour(xx, yy, probs, levels=[.5])
- plt.show()
- #定义反向传播方法:包含正则化
- train_step = tf.train.AdamOptimizer(0.0001).minimize(loss_total)
- with tf.Session() as sess:
- init_op = tf.global_variables_initializer()
- sess.run(init_op)
- STEPS = 40000
- for i in range(STEPS):
- start = (i*BATCH_SIZE) % 300
- end = start + BATCH_SIZE
- sess.run(train_step, feed_dict={x: X[start:end], y_:Y_[start:end]})
- if i % 2000 == 0:
- loss_v = sess.run(loss_total, feed_dict={x:X,y_:Y_})
- print("After %d steps, loss is: %f" %(i, loss_v))
- xx, yy = np.mgrid[-3:3:.01, -3:3:.01]
- grid = np.c_[xx.ravel(), yy.ravel()]
- probs = sess.run(y, feed_dict={x:grid})
- probs = probs.reshape(xx.shape)
- print ("w1:\n",sess.run(w1))
- print ("b1:\n",sess.run(b1))
- print ("w2:\n",sess.run(w2))
- print ("b2:\n",sess.run(b2))
- plt.scatter(X[:,0], X[:,1], c=np.squeeze(Y_c))
- plt.contour(xx, yy, probs, levels=[.5])
- plt.show()