普普通通一个示波器,其实具有丰富的功能。灵活应用各种触发,测量,**等功能可以给你带来事半功倍的效果。多话点时间研究一下会受益很大。IT泡沫破灭后的那几年,好多关门公司的仪器拍卖。为了做事方便在拍了台模拟示波器。后来又拍了台TEK TDS5000系列的数字示波器。可惜后者在做完一个项目后就挂了。电源坏了。拆开了试图修理一下,一看太复杂也就作罢了。后来又进了台有不同故障的同类示波器,想把他们替换一下弄出台好的来。以前TEK的TDS系列可能设计的不太可靠。遇到过几台出问题的。现在用液晶显示的可能可靠性好点了。不管怎样,一般的的示波器TEK的产品还是最好的。比agilent和其它公司的,不管采样技术,显示技术等都高一筹。做高速光通信测试的agilent产品道也还好。
×××××××××××××××
第六回:IP杂谈
IP,就两个字母,孕育了多少时代风云,创造了多少财富积累,成就了多少英雄豪杰,巨企商号。。。。
暂时风过云淡的今天,IP技术已经深入到了人们生活中的方方面面。其重要性怎么说都不为过,而且我们还只是处在其带来变化的初级阶段,但就这也已经让经济生活甚至政治各个层面产生了深远变革。Twitter的出生还只是按月计算,就影响了政教合一铁硬伊朗近期的政治事件。加以时日,如果人人的手机都是一个即时的采访话筒和新闻摄影机,还不知道会对这个世界产生什么程度的改变。
可是,很少人知道IP的来历。大家可能知道WWW与歐洲粒子物理研究中心的关系,知道早期Internet前身的ARPNET。但真正IP的起源是MIT林肯实验室。最早交互性计算机资源共享的概念,来自一位心理学家。他对该实验室所作的人机交互软件颇有兴趣,提出了最早的计算机联网交互共享资源的概念。但早期从事计算机网络的先驱,并没从IP中得到多少财富(也许用$来衡量他们太庸俗了)。当年第一家开发出了网络路由器的公司,给美国当时的电信垄断巨头ATT做演示。ATT第一流的专家们无一例外的给予了该技术以最大的鄙视。认为毫无价值,异想天开。这些专家们判处这家公司死刑的结果是什么?影响了人类早期几乎所有通信技术的ATT贝尔实验室在IP上没有太大的作为(ATM除外)。通信制造业的老大,先前的ATT后来的LU,成为了一家一般的企业,后不得不与Alcatel合并。IP的机会创造了Cisco,Yahoo,Google,。。。。 这就是创新的力量。
所以专家,尤其那些以前做出过很大成绩的老专家,他们的确切定义应该是“在本次技术革命之前的上一代技术的权威”。他们中的大多数对新技术的掌握,不会比新一代的年轻技术精英更快更有权威。但可惜的是他们大多掌握着话语权,掌握着资源。这不能不说是对技术进步的一种明显的阻碍。但恰恰正是因为这一点,才给无数的敢于创新的公司以出人头地的机会。就像在美国cisco之于LU,在中国华为中兴之于邮电部的所属科研院所和企业。当年叱咤风云的后者,还有多少泡沫沉渣泛起?上帝可能最终还是公平的。
已经采用的技术,并不见得是最优的技术。同理新的技术也不见得就有前途。当有专家说其实你的3G没啥了不起,我的技术比它强多了的时候,先别立马下结论,尤其对方跟经济利益纠缠在一起时更是这样。老毛当年说任何主义理想都有其阶级的烙印。此话用到技术上也是如此。当年中国电信的总工论证出小灵通可以平滑过渡到3G时,你应该笑笑就罢了。别当真。专家,不过如此。当年项羽见到秦始皇出游的仪仗时说,“彼可取而代也”。刘邦也说,“大丈夫当如此也。” 虽然有项羽自吻乌江,但也有刘邦面南背北。你虽然现在是初出茅庐的学生,但有无限的潜力。那些专家们现在就现在了,但你还有无限的可能。
最终的标准,技术体制是妥协的结果。尤其是企业巨头们的妥协结果。当你研究学习那些所谓高技术时,也别对他们太崇拜了。那里的字里行间隐藏着很多利益,交易,竞争和妥协。
后来者最喜欢技术革命。在一个成熟的技术市场下,是垄断者大公司的游戏。只有新技术,新体制,才能创造机会,才能使野心勃勃的投资者和创业者得到成功的机会。看待一项技术,主要应该从它的商机中来看。当年IT泡沫时参加过一次一家著名风投的技术论坛。题目就叫“VC眼中的7层协议”。他们认为当时7层协议中最有商机和投资价值的事1-3层。并把每一层的player,机会,和市场规模逐一分析。这是第一次听人按价值来分析7层协议!
技术,无论用怎么复杂的公式来计算分析,用怎么深奥的语言来解释论证,其最终目的只有一个:$
×××××××××××××××
第七回:HDL与IC
做芯片设计或者FPGA/CPLD设计的工程师主要用硬件描述语言。这种类似计算机软件的设计语言灵活,数据流清晰,易于模块化和仿真,是IC设计的主流方式。如果还在用原理图来做芯片逻辑设计的话,应该尽快转到HDL上来。你会立马感觉到不一样的天地。
主要的HDL语言有两个:VHDL和Verilog。两个语言应该是同等层次的。没什么好坏高低之分。记得90年代参加过一次EDA设计展览,一家提供EDA tool的公司有个别出声面的对这两种语言的介绍。两个人一个身穿标准的西装,一个是随意休闲的牛仔。前者挂着一个名牌VHDL,后者是Verilog.这形象的说明了两种语言的风格。他们的说法是美国东部的人比较正统,带有老欧洲的遗风,所以习惯用定义比较严谨的VHDL。而西部尤其加州等地,是牛仔风格。喜欢随意和较少约束。Verilog变成了大多数公司的首选。其实说Verilog随意,并不代表它的定义不严格。只是它的语言格式比较灵活,比较少约束。用任何一个语言都可作出出色的芯片来。从个人的角度来讲比较认同Verilog。当时选择它除了所在的公司用它以外,也喜欢那简单明了的风格。同样一个描述,VHDL的一长串定义就令人有点头疼。
掌握其中的任何一种,对于有点电路设计经验的工程师来讲都不难。难得是规范的文档,清晰的说明和注释,合理明了的架构,和充分的仿真。好多工程师只注重程序的设计本身,即一条条的语句。岂不知一个设计包含程序本身和描述这个程序的完整文档!缺了任何一个都不是完整的设计。简单的来说,设计程序时要想着程序是让他人看的,是公司的IP积累。不是单单为了实现你要达到的几项功能指标。印度的软件外包比中国领先很多,为什么?两国的工程师都很聪明。有人做过分析,对于同样实现一个简单功能,中国工程师10行就写完了,可能还想绞尽脑汁再用更巧妙的方法简化。而印度工程师可能要写100行。区别就是前边说过那几点。
想来做ASIC和FPGA的区别大家都清楚。从设计角度来讲主要是library的异同,包括仿真等等。ASIC代工的兴起,使得设计与制造彻底分离。这样任何一个掌握了一定IP的人都可以开个ASIC设计公司。前者的价值主要变成了IP的积累。目前除了INTEL等个别公司还有自己的Foundry厂外,大多数公司都使用TSMC之类的代工。为了更进一步降低设计IC的初期投入,foundry也提供shuttle服务,即可以允许几家公用一个晶圆,这样就大大降低了设计house的费用。据说现在还有搞sub-shuttle的:几家公司在一个die上设计几个芯片,有点像PCB拼版一样,再用shuttle服务跟别人共享一个晶圆。不知道这么做是否合法。可以的话几万RMB就可设计一个一般规模的ASIC,自己在家都可以做了 .半导体业这几年不景气,可能也跟原来高高在上的高科技白天鹅,变成了寻常的丑小鸭有关。进入门槛降低了。当然这只是指的逻辑设计一个电路来讲。其实IC的价值不在设计的过程,那些算法知识等IP才是最有价值的。就像90nm的技术很成熟了,上海交大的教授还是靠雇佣民工把买来的片子磨一下再印上自己的型号。制造BMW的技术有了,但设计它的IP却不是一朝一日能掌握的。Foundry厂也积累了大量的Library包括各种IP,甚至A/D等转换器件。对于一般的IC,设计不是主要的价值所在,产品的定义和市场的定位成了成功关键。
FPGA主要的厂家有2.5个。Xilinx,Altera算两个。Lattice算半个。后者购买了当年LU的Orca系列,但这么多年人们认可他的还是其看家的CPLD。Xilinx在高速和高集成度的领域占优势。当年IP泡沫时期,协议技术的更新换代很快,人们来不及开ASIC,结果Xilinx大容量高速的FPGA系列备受欢迎。Altera最早把90nm应用到其Cyclone系列,在低成本FPGA市场上给了Xilinx致命一击。但现在情况发生了变化,Xilinx的日子也难过了起来。据说他们现在把45nm用到了其低端的Spartan系列上,是否就此能搬回一城尚难预料。
×××××××××××××××
第八回:PCB Layout
PCB layout是电路设计中重要的一环, 但你是否把它当作一个比较低层次的工作,是有专门的技术员做的工作?如果这样的话,可能就是长期徘徊在第二层而难以突破第三层的一个可能原因吧
PCB布线中的一些基本要求想必大多数设计工程师都熟悉,比如stack up,阻抗匹配,串扰的减小,布局和地平面的分割(可能对数模混合电路的PCB设计,这是最重要的一环)等。这里不做议论了。PCB设计可简单可复杂。简单到用protel之类的软件直接从sch网表引入就开始画图。复杂到有Howard 和Stephen等DX写的大部头著作专门做了研究。如果想做一个有实际能力的电子工程师的话,花时间研究一下PCB的制作,布线的以及SI的理论会大有益处。
PCB的材料从最常用的FR-4到低损耗的Roger,具体的电路可以选择不同的材料。有时通过精心设计元器件的布局,较少过孔,和选用阻抗匹配的连接器件,可以用低成本的FR-4达到大多数的要求。本人就做过FR-4传送3GHz信号达40英寸的设计。中间有两个连接器,一组耦合电容。当然需要有Pre-amp和equalizer的帮助。02年左右见有芯片公司demo的用FR-4传送10GHz几个英寸的演示。如过芯片的serdes做的不够好,那就需要Roger之类的材料来帮助减小损耗了
经常有人问最小可用多粗的线,过孔可打多大?一般来讲过孔的直径不小于板厚的1/10,其它就没有什么太明确的标准了。正确的步骤是在设计PCB之前先跟FAB厂家联系,要到他们的技术要求,明确设计的极限,然后选择合理的设计参数。大多数人是先做完了PCB再跟厂家联系。本末倒置了。
在设计PCB之前要对高速信号做下仿真。根据器件的model,trace的距离,过孔的数目,和连接器的参数来做最坏情形下的仿真,用这个结果结合芯片的datasheet看看lose budget是否有合理的余量。仿真的软件有多种,本人认为Hspice是最精确的一种。其它用spice model的软件也可以,但Hspice有更适合传输线仿真的field solver的方法,即直接解电磁场方程来做计算。而不是用lumped RLGC 的方式。后者有许多不确定性。研读一本SI方面的专著是比要的。最有名的是howard johnson, Stephen Hall的著作。选一本就可以。不要从头到尾全看。根据用到的,选择性的研究一下最好。一边结合项目,一边做仿真分析。实际电路出来测试后,对比研究一下测试结果和仿真的异同,找出仿真或者实现的问题,修改仿真使它接近实际的测试。这一环节有助于功力的升级 。
如果你有成本的压力,用FR-4但有一些高频的trace。这时要仔细的对高速部分精心布局,如果不可避免使用via的话,要尽量采用through-via,即让信号从顶层一直穿到底层来换层。在中间换层会产生via-stub,影响信号完整性。做完布线后顺手用PCB工具中的去掉non-functional pad的功能,把那些中间层没连线的pad去掉,也能较少一些寄生电容。做这种事就是要斤斤计较,设计时多用点心,得到免费的性能提升。
PCB的软件设计工具有很多选择。以下是在另个帖子中写的一段,摘录到这里供参考:
protel:简单易学。国内会的人多。国外不怎么普及。不太稳定。性能也差强人意。尤其处理大的设计时。但做小活应该可以。
十年前,EDA设计工具春秋战国。之后逐渐归于cadence和mentor两大家了。
上一档次的话(就个人熟悉的)
cadence系列:
中档为orcad。orcad被cadence收购后应该变得更稳定可靠。orcad的特点是易学。最好的应该是allegro系列。constraint-driven的设计,真正意义的后仿真,都是顶级的设计工具。
mentor系列
viewlogic 被mentor前几年收购。对于复杂的设计尤其强大。支持文本方式编辑录入。但功能太多,不容易掌握。PADS也是用的比较多的PCB工具。自动布线不错。
如果不考虑价格:推荐viewlogic做capture,allegro做PCB。后者是大部分专业layout house用的工具
如果考虑价格:orcad+PADS(PCB)也是不错的选择。
orcad是一般公司做evaluation board的设计首选。比如ic公司。中小型公司用的也比较多。
当然随手偶尔做点什么,任何一个都能胜任。如果不是专业的layout工程师,能用这些layout工具来做检查就好了。但PCB的设计流程,材料,SI分析等还是要做点研究。
×××××××××××××××
第九回:俩学音乐出身的工程师
经有过两个老美同事。凑巧的都是学音乐出身的,后来凭兴趣自学做了电子和软件方面的专家。
第一个是一家公司的总设计师。专业是学的音乐。对电子的东西比较感兴趣,就走进了这一行。如果你有什么想法跟他说,他低头思考一会大多时间就给出你答案。是在一合作项目时认识的。工作一段后每每感觉他的一些想法匪夷所思,有时惊叹实现的巧妙。但也有时候他想出来的很不错的想法,实际已经有现成的东西可借用了。这是感觉到他的唯一弱点。人总是这样,正统教育训练出来的,知道使用好多现成的东西,但缺少了独创性。受传统教育少的,得益于较少的约束和具有更好的创造力,但有时也可能耗费不少时间在一些前人已做过的东西上。此事古难全。
另一个是在某公司时的同事。做事非常严谨。他开会或者大家讨论时的笔记,非常干净整洁。拿过来直接发表就可。想学他这招但**了不几天就放弃了。人长的五大三粗,可做事想不到的细腻。也是本科学音乐后来自学该改行软件的。我们那时下班后总总喜欢在停车场打会篮球。他从不掺和。有次我邀他一起打但他只是笑笑摇摇头。我开始还以为他不会打。后来才知道人家是原德州大学校队的!就是那些NBA球员们的前身。他有的队友后来可能就去NBA了。这样的本事哪能轻易跟我们这种菜鸟玩。现在他是一家航天公司的软件总设计师。
兴趣是良师。功夫在诗外。我们从中学开始就分文理科之类的,谬之大矣
电路设计漫谈之10: 接地(1)
一直想谈谈接地问题,但总觉得不容易下手。接地,最简单的定义,也是最难把握的。简单到初学者把所有“地线”一连就可,复杂到要考虑安全,干扰,强弱信号分配,阻抗,噪声,EMI,保护,交流直流地,等等。记的从开始注意信号完整性后,对“地”就在不停的琢磨。从数字转到模拟后又开始了一轮的研究。跟电力沾上点边后又有了新的视角。。。。。。无穷尽那:-) 下边从安全保护,信号完整性,模拟电路几个不同的角度聊聊对地的处理。
从安全保护角度看接地
IEC对几种接地方式有明确的定义。了解一下这些AC系统的接地要求能帮助理解系统设计中信号地保护地等概念和怎样正确处理。在常用的TN-C-S接地系统中,要求有个单独的保护地(可能跟信号地在机器内某点连接在一起)连接到AC配线箱的大地上(在那跟Neutral连接在一起)。如果有EMI或者其它干扰隔离的考量,可以把这个保护地线屏蔽起来专线连接。但对于高频噪声这种连接可能起到相反的左右,对保护地连线的长度有要求(小于干扰波长的1/20)。AC接地系统的简明介绍参见下边连接。http://en.wikipedia.org/wiki/Earthing_system
整个建筑的地线系统应该连在一起,地线系统可以有多个点接大地,但只能在一个点(AC进入的点)跟Neutral线连接在一起。有时你觉得用示波器再同时摸电路板时觉得麻麻的,那就是AC的地线系统没连接好。一般情况下一定要用三芯的插座。机壳与三芯中的保护地要可靠连接在一起。除非那种电信的-48V隔离供电,信号地,机壳,以及电源地在某点要连接起来。跨建筑的信号连接最好用差分或者光信号,除非他们的地线是连在一起的。经常发现地线没可靠连接的时候(AC保护地没连到建筑的接地系统上,或者信号地跟保护地没连接)系统不正常工作或接口被烧坏的情形(case1)。
|