- #include "math.h"
- void kfft(pr,pi,n,k,fr,fi)
- int n,k;
- double pr[],pi[],fr[],fi[];
- {
- int it,m,is,i,j,nv,l0;
- double p,q,s,vr,vi,poddr,poddi;
- for (it=0; it<=n-1; it++) //将pr[0]和pi[0]循环赋值给fr[]和fi[]
- {
- m=it;
- is=0;
- for(i=0; i<=k-1; i++)
- {
- j=m/2;
- is=2*is+(m-2*j);
- m=j;
- }
- fr[it]=pr[is];
- fi[it]=pi[is];
- }
- pr[0]=1.0;
- pi[0]=0.0;
- p=6.283185306/(1.0*n);
- pr[1]=cos(p); //将w=e^-j2pi/n用欧拉公式表示
- pi[1]=-sin(p);
- for (i=2; i<=n-1; i++) //计算pr[]
- {
- p=pr[i-1]*pr[1];
- q=pi[i-1]*pi[1];
- s=(pr[i-1]+pi[i-1])*(pr[1]+pi[1]);
- pr[i]=p-q; pi[i]=s-p-q;
- }
- for (it=0; it<=n-2; it=it+2)
- {
- vr=fr[it];
- vi=fi[it];
- fr[it]=vr+fr[it+1];
- fi[it]=vi+fi[it+1];
- fr[it+1]=vr-fr[it+1];
- fi[it+1]=vi-fi[it+1];
- }
- m=n/2;
- nv=2;
- for (l0=k-2; l0>=0; l0--) //蝴蝶操作
- {
- m=m/2;
- nv=2*nv;
- for (it=0; it<=(m-1)*nv; it=it+nv)
- for (j=0; j<=(nv/2)-1; j++)
- {
- p=pr[m*j]*fr[it+j+nv/2];
- q=pi[m*j]*fi[it+j+nv/2];
- s=pr[m*j]+pi[m*j];
- s=s*(fr[it+j+nv/2]+fi[it+j+nv/2]);
- poddr=p-q;
- poddi=s-p-q;
- fr[it+j+nv/2]=fr[it+j]-poddr;
- fi[it+j+nv/2]=fi[it+j]-poddi;
- fr[it+j]=fr[it+j]+poddr;
- fi[it+j]=fi[it+j]+poddi;
- }
- }
- for (i=0; i<=n-1; i++)
- {
- pr[i]=sqrt(fr[i]*fr[i]+fi[i]*fi[i]); //幅值计算
- }
- return;
- }
|