打印

ti tms320f2806 DSP ecan自测模式,TA不置位呀,求助

[复制链接]
949|14
手机看帖
扫描二维码
随时随地手机跟帖
跳转到指定楼层
楼主
liuchenbaidu|  楼主 | 2016-9-6 10:44 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
// TI File $Revision: /main/4 $
// Checkin $Date: December 3, 2004   13:58:42 $
//###########################################################################
//
// FILE:    Example_280xECanBack2Back.c
//
// TITLE:   DSP280x eCAN Back-to-back transmission and reception in
//          SELF-TEST mode
//
// ASSUMPTIONS:
//
//    This program requires the DSP280x header files.  
//
//    This progrm uses the peripheral's self test mode.
//    Other then boot mode configuration, no other hardware configuration
//    is required.   
//
//    As supplied, this project is configured for "boot to SARAM"
//    operation.  The 280x Boot Mode table is shown below.  
//    For information on configuring the boot mode of an eZdsp,
//    please refer to the documentation included with the eZdsp,  
//
//       Boot      GPIO18     GPIO29    GPIO34
//       Mode      SPICLKA    SCITXDA
//                 SCITXB
//       -------------------------------------
//       Flash       1          1        1
//       SCI-A       1          1        0
//       SPI-A       1          0        1
//       I2C-A       1          0        0
//       ECAN-A      0          1        1        
//       SARAM       0          1        0  <- "boot to SARAM"
//       OTP         0          0        1
//       I/0         0          0        0
//
//
//
// DESCRIPTION:
//
//    This test transmits data back-to-back at high speed without
//    stopping.
//    The received data is verified. Any error is flagged.
//    MBX0 transmits to MBX16, MBX1 transmits to MBX17 and so on....
//    This program illustrates the use of self-test mode
//
//###########################################################################
// Original Author H.J.
//
// $TI Release: DSP280x V1.30 $
// $Release Date: February 10, 2006 $
//###########################################################################

#include "DSP280x_Device.h"     // DSP280x Headerfile Include File
#include "DSP280x_Examples.h"   // DSP280x Examples Include File

// Prototype statements for functions found within this file.
void mailbox_check(int32 T1, int32 T2, int32 T3);
void mailbox_read(int16 i);

// Global variable for this example
Uint32  ErrorCount;
Uint32  PassCount;
Uint32  MessageReceivedCount;

Uint32  TestMbox1 = 0;
Uint32  TestMbox2 = 0;
Uint32  TestMbox3 = 0;

void main(void)
{

    Uint16  j;

// eCAN control registers require read/write access using 32-bits.  Thus we
// will create a set of shadow registers for this example.  These shadow
// registers will be used to make sure the access is 32-bits and not 16.
   struct ECAN_REGS ECanaShadow;

// Step 1. Initialize System Control:
// PLL, WatchDog, enable Peripheral Clocks
// This example function is found in the DSP280x_SysCtrl.c file.
   InitSysCtrl();

// Step 2. Initalize GPIO:
// This example function is found in the DSP280x_Gpio.c file and
// illustrates how to set the GPIO to it's default state.
// InitGpio();  // Skipped for this example  

// For this example, configure CAN pins using GPIO regs here
// This function is found in DSP280x_ECan.c
   InitECanGpio();

// Step 3. Clear all interrupts and initialize PIE vector table:
// Disable CPU interrupts
   DINT;

// Initialize PIE control registers to their default state.
// The default state is all PIE interrupts disabled and flags
// are cleared.  
// This function is found in the DSP280x_PieCtrl.c file.
   InitPieCtrl();

// Disable CPU interrupts and clear all CPU interrupt flags:
   IER = 0x0000;
   IFR = 0x0000;

// Initialize the PIE vector table with pointers to the shell Interrupt
// Service Routines (ISR).  
// This will populate the entire table, even if the interrupt
// is not used in this example.  This is useful for debug purposes.
// The shell ISR routines are found in DSP280x_DefaultIsr.c.
// This function is found in DSP280x_PieVect.c.
   InitPieVectTable();

// Step 4. Initialize all the Device Peripherals:
// This function is found in DSP280x_InitPeripherals.c
// InitPeripherals(); // Not required for this example

// Step 5. User specific code, enable interrupts:

    MessageReceivedCount = 0;
    ErrorCount = 0;
    PassCount = 0;
   
        //InitECana();
    // eCAN control registers require 32-bit access.
    // If you want to write to a single bit, the compiler may break this
    // access into a 16-bit access.  One solution, that is presented here,
    // is to use a shadow register to force the 32-bit access.
     
    // Read the entire register into a shadow register.  This access
    // will be 32-bits.  Change the desired bit and copy the value back
    // to the eCAN register with a 32-bit write.
   
    // Configure the eCAN RX and TX pins for eCAN transmissions
    EALLOW;
    ECanaShadow.CANTIOC.all = ECanaRegs.CANTIOC.all;
    ECanaShadow.CANTIOC.bit.TXFUNC = 1;
    ECanaRegs.CANTIOC.all = ECanaShadow.CANTIOC.all;

    ECanaShadow.CANRIOC.all = ECanaRegs.CANRIOC.all;
    ECanaShadow.CANRIOC.bit.RXFUNC = 1;
    ECanaRegs.CANRIOC.all = ECanaShadow.CANRIOC.all;
    EDIS;
     
    // Disable all Mailboxes
    // Since this write is to the entire register (instead of a bit
    // field) a shadow register is not required.
    ECanaRegs.CANME.all = 0;

        ECanaShadow.CANTRR.all = ECanaRegs.CANTRR.all;
        ECanaShadow.CANTRR.all=0xFF;

    ECanaRegs.CANTRR.all = ECanaShadow.CANTRR.all;

    // Mailboxs can be written to 16-bits or 32-bits at a time
    // Write to the MSGID field of TRANSMIT mailboxes MBOX0 - 15
    ECanaMboxes.MBOX0.MSGID.all = 0x9555AAA0;
    ECanaMboxes.MBOX1.MSGID.all = 0x9555AAA1;
    ECanaMboxes.MBOX2.MSGID.all = 0x9555AAA2;
    ECanaMboxes.MBOX3.MSGID.all = 0x9555AAA3;
    ECanaMboxes.MBOX4.MSGID.all = 0x9555AAA4;
    ECanaMboxes.MBOX5.MSGID.all = 0x9555AAA5;
    ECanaMboxes.MBOX6.MSGID.all = 0x9555AAA6;
    ECanaMboxes.MBOX7.MSGID.all = 0x9555AAA7;
    ECanaMboxes.MBOX8.MSGID.all = 0x9555AAA8;
    ECanaMboxes.MBOX9.MSGID.all = 0x9555AAA9;
    ECanaMboxes.MBOX10.MSGID.all = 0x9555AAAA;
    ECanaMboxes.MBOX11.MSGID.all = 0x9555AAAB;
    ECanaMboxes.MBOX12.MSGID.all = 0x9555AAAC;
    ECanaMboxes.MBOX13.MSGID.all = 0x9555AAAD;
    ECanaMboxes.MBOX14.MSGID.all = 0x9555AAAE;
    ECanaMboxes.MBOX15.MSGID.all = 0x9555AAAF;
   
    // Write to the MSGID field of RECEIVE mailboxes MBOX16 - 31
    ECanaMboxes.MBOX16.MSGID.all = 0x9555AAA0;
    ECanaMboxes.MBOX17.MSGID.all = 0x9555AAA1;
    ECanaMboxes.MBOX18.MSGID.all = 0x9555AAA2;
    ECanaMboxes.MBOX19.MSGID.all = 0x9555AAA3;
    ECanaMboxes.MBOX20.MSGID.all = 0x9555AAA4;
    ECanaMboxes.MBOX21.MSGID.all = 0x9555AAA5;
    ECanaMboxes.MBOX22.MSGID.all = 0x9555AAA6;
    ECanaMboxes.MBOX23.MSGID.all = 0x9555AAA7;
    ECanaMboxes.MBOX24.MSGID.all = 0x9555AAA8;
    ECanaMboxes.MBOX25.MSGID.all = 0x9555AAA9;
    ECanaMboxes.MBOX26.MSGID.all = 0x9555AAAA;
    ECanaMboxes.MBOX27.MSGID.all = 0x9555AAAB;
    ECanaMboxes.MBOX28.MSGID.all = 0x9555AAAC;
    ECanaMboxes.MBOX29.MSGID.all = 0x9555AAAD;
    ECanaMboxes.MBOX30.MSGID.all = 0x9555AAAE;
    ECanaMboxes.MBOX31.MSGID.all = 0x9555AAAF;


         // Specify that 8 bits will be sent/received
    ECanaMboxes.MBOX0.MSGCTRL.bit.DLC = 8;
    ECanaMboxes.MBOX1.MSGCTRL.bit.DLC = 8;
    ECanaMboxes.MBOX2.MSGCTRL.bit.DLC = 8;
    ECanaMboxes.MBOX3.MSGCTRL.bit.DLC = 8;
    ECanaMboxes.MBOX4.MSGCTRL.bit.DLC = 8;
    ECanaMboxes.MBOX5.MSGCTRL.bit.DLC = 8;
    ECanaMboxes.MBOX6.MSGCTRL.bit.DLC = 8;
    ECanaMboxes.MBOX7.MSGCTRL.bit.DLC = 8;
    ECanaMboxes.MBOX8.MSGCTRL.bit.DLC = 8;
    ECanaMboxes.MBOX9.MSGCTRL.bit.DLC = 8;
    ECanaMboxes.MBOX10.MSGCTRL.bit.DLC = 8;
    ECanaMboxes.MBOX11.MSGCTRL.bit.DLC = 8;
    ECanaMboxes.MBOX12.MSGCTRL.bit.DLC = 8;
    ECanaMboxes.MBOX13.MSGCTRL.bit.DLC = 8;
    ECanaMboxes.MBOX14.MSGCTRL.bit.DLC = 8;
    ECanaMboxes.MBOX15.MSGCTRL.bit.DLC = 8;
   
    // No remote frame is requested
    // Since RTR bit is undefined upon reset,
    // it must be initialized to the proper value
    ECanaMboxes.MBOX0.MSGCTRL.bit.RTR = 0;      
    ECanaMboxes.MBOX1.MSGCTRL.bit.RTR = 0;  
    ECanaMboxes.MBOX2.MSGCTRL.bit.RTR = 0;  
    ECanaMboxes.MBOX3.MSGCTRL.bit.RTR = 0;
    ECanaMboxes.MBOX4.MSGCTRL.bit.RTR = 0;
    ECanaMboxes.MBOX5.MSGCTRL.bit.RTR = 0;
    ECanaMboxes.MBOX6.MSGCTRL.bit.RTR = 0;
    ECanaMboxes.MBOX7.MSGCTRL.bit.RTR = 0;
    ECanaMboxes.MBOX8.MSGCTRL.bit.RTR = 0;
    ECanaMboxes.MBOX9.MSGCTRL.bit.RTR = 0;
    ECanaMboxes.MBOX10.MSGCTRL.bit.RTR = 0;
    ECanaMboxes.MBOX11.MSGCTRL.bit.RTR = 0;
    ECanaMboxes.MBOX12.MSGCTRL.bit.RTR = 0;
    ECanaMboxes.MBOX13.MSGCTRL.bit.RTR = 0;
    ECanaMboxes.MBOX14.MSGCTRL.bit.RTR = 0;
    ECanaMboxes.MBOX15.MSGCTRL.bit.RTR = 0;

    // Configure Mailboxes 0-15 as Tx, 16-31 as Rx
    // Since this write is to the entire register (instead of a bit
    // field) a shadow register is not required.
    ECanaRegs.CANMD.all = 0xFFFF0000;
   
    // Enable all Mailboxes */
    // Since this write is to the entire register (instead of a bit
    // field) a shadow register is not required.
    ECanaRegs.CANME.all = 0xFFFFFFFF;

   
   
    // Write to the mailbox RAM field of MBOX0 - 15
    ECanaMboxes.MBOX0.MDL.all = 0x9555AAA0;
    ECanaMboxes.MBOX0.MDH.all = 0x89ABCDEF;

    ECanaMboxes.MBOX1.MDL.all = 0x9555AAA1;
    ECanaMboxes.MBOX1.MDH.all = 0x89ABCDEF;
   
    ECanaMboxes.MBOX2.MDL.all = 0x9555AAA2;
    ECanaMboxes.MBOX2.MDH.all = 0x89ABCDEF;

    ECanaMboxes.MBOX3.MDL.all = 0x9555AAA3;
    ECanaMboxes.MBOX3.MDH.all = 0x89ABCDEF;

    ECanaMboxes.MBOX4.MDL.all = 0x9555AAA4;
    ECanaMboxes.MBOX4.MDH.all = 0x89ABCDEF;

    ECanaMboxes.MBOX5.MDL.all = 0x9555AAA5;
    ECanaMboxes.MBOX5.MDH.all = 0x89ABCDEF;

    ECanaMboxes.MBOX6.MDL.all = 0x9555AAA6;
    ECanaMboxes.MBOX6.MDH.all = 0x89ABCDEF;

    ECanaMboxes.MBOX7.MDL.all = 0x9555AAA7;
    ECanaMboxes.MBOX7.MDH.all = 0x89ABCDEF;

    ECanaMboxes.MBOX8.MDL.all = 0x9555AAA8;
    ECanaMboxes.MBOX8.MDH.all = 0x89ABCDEF;

    ECanaMboxes.MBOX9.MDL.all = 0x9555AAA9;
    ECanaMboxes.MBOX9.MDH.all = 0x89ABCDEF;

    ECanaMboxes.MBOX10.MDL.all = 0x9555AAAA;
    ECanaMboxes.MBOX10.MDH.all = 0x89ABCDEF;

    ECanaMboxes.MBOX11.MDL.all = 0x9555AAAB;
    ECanaMboxes.MBOX11.MDH.all = 0x89ABCDEF;

    ECanaMboxes.MBOX12.MDL.all = 0x9555AAAC;
    ECanaMboxes.MBOX12.MDH.all = 0x89ABCDEF;

    ECanaMboxes.MBOX13.MDL.all = 0x9555AAAD;
    ECanaMboxes.MBOX13.MDH.all = 0x89ABCDEF;

    ECanaMboxes.MBOX14.MDL.all = 0x9555AAAE;
    ECanaMboxes.MBOX14.MDH.all = 0x89ABCDEF;

    ECanaMboxes.MBOX15.MDL.all = 0x9555AAAF;
    ECanaMboxes.MBOX15.MDH.all = 0x89ABCDEF;

    // Since this write is to the entire register (instead of a bit
    // field) a shadow register is not required.
    EALLOW;
    ECanaRegs.CANMIM.all = 0xFFFFFFFF;

    // Request permission to change the configuration registers
    ECanaShadow.CANMC.all = ECanaRegs.CANMC.all;
    ECanaShadow.CANMC.bit.CCR = 1;            
    ECanaRegs.CANMC.all = ECanaShadow.CANMC.all;
    EDIS;
   
    // Wait until the CPU has been granted permission to change the
    // configuration registers
    // Wait for CCE bit to be set..
    do
    {
      ECanaShadow.CANES.all = ECanaRegs.CANES.all;
    } while(ECanaShadow.CANES.bit.CCE != 1 );  
   
    // Configure the eCAN timing
    EALLOW;
    ECanaShadow.CANBTC.all = ECanaRegs.CANBTC.all;

    ECanaShadow.CANBTC.bit.BRPREG = 9;    // (BRPREG + 1) = 10 feeds a 15 MHz CAN clock
    ECanaShadow.CANBTC.bit.TSEG2REG = 1;//5 ; // to the CAN module. (150 / 10 = 15)
    ECanaShadow.CANBTC.bit.TSEG1REG = 6;//7;  // Bit time = 15
    ECanaRegs.CANBTC.all = ECanaShadow.CANBTC.all;
   
    ECanaShadow.CANMC.all = ECanaRegs.CANMC.all;
    ECanaShadow.CANMC.bit.CCR = 0;            
    ECanaRegs.CANMC.all = ECanaShadow.CANMC.all;
    EDIS;

    // Wait until the CPU no longer has permission to change the
    // configuration registers
    do
    {
      ECanaShadow.CANES.all = ECanaRegs.CANES.all;
    } while(ECanaShadow.CANES.bit.CCE != 0 );

    // Configure the eCAN for self test mode
    // Enable the enhanced features of the eCAN.
    EALLOW;
    ECanaShadow.CANMC.all = ECanaRegs.CANMC.all;
    ECanaShadow.CANMC.bit.STM = 1;    // Configure CAN for self-test mode  
    ECanaShadow.CANMC.bit.SCB = 1;    // eCAN mode (reqd to access 32 mailboxes)
        //ECanaShadow.CANMC.bit.ABO = 1;
        //ECanaShadow.CANMC.bit.SAM = 1;
    ECanaRegs.CANMC.all = ECanaShadow.CANMC.all;

   
       
        while(ECanaRegs.CANTRS.all!=0){}

    EDIS;
   
    // Begin transmitting
    for(;;)                                
    {
       ECanaShadow.CANTA.all=0;
       //ECanaRegs.CANTRS.all = 0x0000FFFF;  // Set TRS for all transmit mailboxes
           ECanaShadow.CANTRS.all = 0;  // Set TRS for all transmit mailboxes
           ECanaShadow.CANTRS.all=0xFFFF;
           ECanaRegs.CANTRS.all=ECanaShadow.CANTRS.all;
          

       while(ECanaShadow.CANTA.all != 0x0000FFFF ) {}  // Wait for all TAn bits to be set..
       ECanaRegs.CANTA.all = 0x0000FFFF;   // Clear all TAn   
       MessageReceivedCount++;

       //Read from Receive mailboxes and begin checking for data */
       for(j=0; j<16; j++)         // Read & check 16 mailboxes
       {
          mailbox_read(j);         // This func reads the indicated mailbox data
          mailbox_check(TestMbox1,TestMbox2,TestMbox3); // Checks the received data
       }
    }
}

// This function reads out the contents of the indicated
// by the Mailbox number (MBXnbr).
void mailbox_read(int16 MBXnbr)
{
   volatile struct MBOX *Mailbox;
   Mailbox = &ECanaMboxes.MBOX0 + MBXnbr;
   TestMbox1 = Mailbox->MDL.all; // = 0x9555AAAn (n is the MBX number)
   TestMbox2 = Mailbox->MDH.all; // = 0x89ABCDEF (a constant)
   TestMbox3 = Mailbox->MSGID.all;// = 0x9555AAAn (n is the MBX number)

} // MSGID of a rcv MBX is transmitted as the MDL data.


void mailbox_check(int32 T1, int32 T2, int32 T3)
{
    if((T1 != T3) || ( T2 != 0x89ABCDEF))
    {
       ErrorCount++;
    }
    else
    {
       PassCount++;
    }
}


//===========================================================================
// No more.
//===========================================================================

相关帖子

沙发
zhangmangui| | 2016-9-6 23:14 | 只看该作者
一时半会不知道什么原因啊

使用特权

评论回复
板凳
liuchenbaidu|  楼主 | 2016-9-7 08:33 | 只看该作者
查阅TI的文档,自测模式就说波特率设置对了就可以。配置的话,我也是找了好些2808的例子,同样的效果,懂的大师指导一下啦。

使用特权

评论回复
地板
JY-DX-JY| | 2016-9-8 15:55 | 只看该作者
怎么接的线?

使用特权

评论回复
5
chenci2013| | 2016-9-9 17:11 | 只看该作者
代码没有注释吗?

使用特权

评论回复
6
chenci2013| | 2016-9-9 17:14 | 只看该作者
这样看着太乱了,最好模块化吧。

使用特权

评论回复
7
liuchenbaidu|  楼主 | 2016-9-10 08:22 | 只看该作者

自测模式,就是不是与外部进行CAN通信,自发自收。没有通过CAN IO引脚

使用特权

评论回复
8
liuchenbaidu|  楼主 | 2016-9-10 08:23 | 只看该作者
chenci2013 发表于 2016-9-9 17:11
代码没有注释吗?

英文注释,其实就是分三步,一是把IO功能设置为CAN,而是进入配置模式,配置波特率,三是设置自测模式,并写TRS寄存器发送。我用28335一下就跑通了。这个2806不知道为啥。。。。

使用特权

评论回复
9
liuchenbaidu|  楼主 | 2016-9-10 08:24 | 只看该作者
chenci2013 发表于 2016-9-9 17:14
这样看着太乱了,最好模块化吧。

看看吧,懂的一下就看明白了。

使用特权

评论回复
10
JY-DX-JY| | 2016-9-10 10:18 | 只看该作者
liuchenbaidu 发表于 2016-9-10 08:22
自测模式,就是不是与外部进行CAN通信,自发自收。没有通过CAN IO引脚

不是呀,要把发送和接收接一块呀,就像串口自发自收一样。

使用特权

评论回复
11
liuchenbaidu|  楼主 | 2016-9-12 08:37 | 只看该作者
JY-DX-JY 发表于 2016-9-10 10:18
不是呀,要把发送和接收接一块呀,就像串口自发自收一样。

自发自收的意思就是它自己内部已经连接好了,自己发送的没有错误的时候,自己能产生应答,所以你自发自收的时候,CANH和CANL悬空就行了

使用特权

评论回复
12
JY-DX-JY| | 2016-9-12 09:04 | 只看该作者
liuchenbaidu 发表于 2016-9-12 08:37
自发自收的意思就是它自己内部已经连接好了,自己发送的没有错误的时候,自己能产生应答,所以你自发自收 ...

不好意思,弄错了

使用特权

评论回复
13
liuchenbaidu|  楼主 | 2016-9-12 15:52 | 只看该作者
没关系,有新进展,用2812的ECAN back2back例子既然能够跑过。也就是说明了板子没有问。这个TI的例子有问题呀。就是寄存器可能还是设置有问题。
然后我对应了CMD文件的地址去看,用2812的代码然后去适应2806,既然同样的效果,也是TA不置位呀。

使用特权

评论回复
14
Snow7| | 2016-9-15 22:00 | 只看该作者
28335和2806配置是不是不太一样啊

使用特权

评论回复
15
liuchenbaidu|  楼主 | 2016-9-28 08:30 | 只看该作者
Snow7 发表于 2016-9-15 22:00
28335和2806配置是不是不太一样啊

怎么不一样,哪里不一样?

使用特权

评论回复
发新帖 我要提问
您需要登录后才可以回帖 登录 | 注册

本版积分规则

1

主题

8

帖子

1

粉丝