|
第三十五章 人脸68关键点检测实验
在上一章节中,介绍了利用KPU模块实现人脸属性分析的功能,本章将继续介绍利用KPU模块实现人脸68关键点检测的功能。通过本章的学习,读者将学习到使用SDK编程技术实现人脸68关键点检测应用。 本章分为如下几个小节: 35.1 KPU模块介绍 35.2 硬件设计 35.3 程序设计 35.4 运行验证
35.1 KPU模块介绍 有关KPU模块的介绍,请见第30.1小节《KPU介绍》。 35.2 硬件设计 35.2.1 例程功能 1. 获取摄像头输出的图像,并送入KPU进行人脸检测,接着对检测到的人脸分别进行人脸68关键点检测,最后将所有的检测结果和原始图像一同在LCD上进行显示。 35.2.2 硬件资源 本章实验内容,主要讲解KPU模块的使用,无需关注硬件资源。 35.2.3 原理图 本章实验内容,主要讲解KPU模块的使用,无需关注原理图。 35.3 程序设计 35.3.1 main.c代码 main.c中的代码如下所示: INCBIN(model_kpu, "face_detect_320x240.kmodel"); INCBIN(model_landm, "landmark68.kmodel"); image_t kpu_image,crop_image,ai_image; obj_info_t cla_obj_coord; static float g_anchor[ANCHOR_NUM * 2] = {0.1075, 0.126875, 0.126875, 0.175, 0.1465625, 0.2246875, 0.1953125, 0.25375, 0.2440625, 0.351875, 0.341875, 0.4721875, 0.5078125, 0.6696875, 0.8984375, 1.099687, 2.129062, 2.425937}; /*特征检测*/ static volatile uint8_t ai_done_flag; /* KPU运算完成回调 */ static void ai_done_callback(void *userdata) { ai_done_flag = 1; } static inline float sigmoid(float x) { return 1.f / (1.f + expf(-x)); } int main(void) { uint8_t *disp; uint8_t *ai; kpu_model_context_t task_kpu; kpu_model_context_t task_landm; float *pred_box, *pred_clses; size_t pred_box_size, pred_clses_size; uint16_t x1 = 0,y1 = 0,x2,y2,cut_width, cut_height; uint16_t x_circle = 0; uint16_t y_circle = 0; region_layer_t detect_kpu; sysctl_pll_set_freq(SYSCTL_PLL0, 800000000); sysctl_pll_set_freq(SYSCTL_PLL1, 400000000); sysctl_pll_set_freq(SYSCTL_PLL2, 45158400); sysctl_clock_enable(SYSCTL_CLOCK_AI); sysctl_set_power_mode(SYSCTL_POWER_BANK6, SYSCTL_POWER_V18); sysctl_set_power_mode(SYSCTL_POWER_BANK7, SYSCTL_POWER_V18); sysctl_set_spi0_dvp_data(1); lcd_init(); lcd_set_direction(DIR_YX_LRUD); camera_init(24000000); camera_set_pixformat(PIXFORMAT_RGB565); camera_set_framesize(320, 240); kpu_image.pixel = 3; kpu_image.width = 320; kpu_image.height = 240; // image_init(&kpu_image); ai_image.pixel = 3; ai_image.width = 128; ai_image.height = 128; image_init(&ai_image); if (kpu_load_kmodel(&task_kpu, (const uint8_t *)model_kpu_data) != 0) { printf("Kmodel load failed!\n"); while (1); } if (kpu_load_kmodel(&task_landm, (const uint8_t *)model_landm_data) != 0) { printf("Kmodel load failed!\n"); while (1); } detect_kpu.anchor_number = ANCHOR_NUM; detect_kpu.anchor = g_anchor; detect_kpu.threshold = 0.5; detect_kpu.nms_value = 0.2; region_layer_init(&detect_kpu, 10, 8, 30, 320, 240); while (1) { if (camera_snapshot(&disp, &ai) == 0) { ai_done_flag = 0; if (kpu_run_kmodel(&task_kpu, (const uint8_t *)ai, DMAC_CHANNEL5, ai_done_callback, NULL) != 0) { printf("Kmodel run failed!\n"); while (1); } while (ai_done_flag == 0); if (kpu_get_output(&task_kpu, 0, (uint8_t **)&pred_box, &pred_box_size) != 0) { printf("Output get failed!\n"); while (1); } detect_kpu.input = pred_box; region_layer_run(&detect_kpu, &cla_obj_coord); for (size_t j = 0; j < cla_obj_coord.obj_number; j++) { if (cla_obj_coord.obj[j].x1 >= 2) { x1 = cla_obj_coord.obj[j].x1 - 2; /* 对识别框稍微放大点 */ } if (cla_obj_coord.obj[j].y1 >= 2) { y1 = cla_obj_coord.obj[j].y1 - 2; } x2 = cla_obj_coord.obj[j].x2 + 2; y2 = cla_obj_coord.obj[j].y2 + 2; cut_width = x2 - x1 ; cut_height = y2 - y1 ; kpu_image.addr = ai; crop_image.pixel = 3; crop_image.width = cut_width; crop_image.height = cut_height; image_init(&crop_image); image_crop(&kpu_image, &crop_image, x1, y1); image_resize(&crop_image,&ai_image); image_deinit(&crop_image); ai_done_flag = 0; if (kpu_run_kmodel(&task_landm, (const uint8_t *)ai_image.addr, DMAC_CHANNEL5, ai_done_callback, NULL) != 0) { printf("Kmodel run failed!\n"); while (1); } while (ai_done_flag == 0); if (kpu_get_output(&task_landm, 0, (uint8_t **)&pred_clses, &pred_clses_size) != 0) { printf("Output get failed!\n"); while (1); } draw_box_rgb565_image((uint16_t *)disp, 320, x1, y1, x2, y2, GREEN); /* 画人脸框 */ for (size_t i = 0; i < 68; i++) { x_circle= sigmoid(pred_clses[2 * i]) * cut_width + x1; y_circle= sigmoid(pred_clses[2 * i + 1]) * cut_height + y1; draw_point_rgb565_image((uint16_t *)disp, 320, x_circle, y_circle, BLUE); /* 画人脸关键点 */ } } lcd_draw_picture(0, 0, 320, 240, (uint16_t *)disp); camera_snapshot_release(); } } } 本实验和上个实验相似,需要用到两个AI模型, face_detect_320x240.kmodel是人脸检测模型,用于获取人脸关键信息的坐标,然后以图像两个坐标把人脸的关键区域切割下来给另外个模型使用。landmark68.kmodel是人脸68关键点检测的模型,网络运算的图片大小为128*128。 可以看到一开始是先初始化了LCD和摄像头,初始化完成后创建一个128*128的RGB888图片缓存区,然后加载上述两个需要用到的网络模型,并初始化YOLO2网络,配置region_layer_t结构体参数的数据。 最后在一个循环中不断地获取摄像头输出的图像,图像尺寸为320*240,将摄像头图像送入KPU中进行运算,然后将运算结果作为输入传入region_layer_run函数进行解析,该函数会把解析的坐标放在cla_obj_coord结构体中,进而可以通过两个坐标点提取摄像头图像的人脸区域,我们将人脸区域切割下来,再缩放成128*128的图像大小,最后分别放入人脸68关键点检测模型运算,并将运算结果绘制到LCD显示器上。 35.4 运行验证 将DNK210开发板连接到电脑主机,通过VSCode将固件烧录到开发板中,将摄像头对准人脸,让其采集到人脸图像,随后便能在LCD上看到摄像头输出的图像,同时能看到图像上标注了人脸位置和人脸68关键点位置等信息,如下图所示: 图35.4.1 LCD显示人脸68关键点检测实验结果
|