原理编辑
Docker核心解决的问题是利用LXC来实现类似VM的功能,从而利用更加节省的硬件资源提供给用户更多的计算资源。同VM的方式不同, LXC 其并不是一套硬件虚拟化方法 - 无法归属到全虚拟化、部分虚拟化和半虚拟化中的任意一个,而是一个操作系统级虚拟化方法, 理解起来可能并不像VM那样直观。所以我们从虚拟化要docker要解决的问题出发,看看他是怎么满足用户虚拟化需求的。
用户需要考虑虚拟化方法,尤其是硬件虚拟化方法,需要借助其解决的主要是以下4个问题:
隔离性 - 每个用户实例之间相互隔离, 互不影响。 硬件虚拟化方法给出的方法是VM, LXC给出的方法是container,更细一点是kernel namespace
可配额/可度量 - 每个用户实例可以按需提供其计算资源,所使用的资源可以被计量。硬件虚拟化方法因为虚拟了CPU, memory可以方便实现, LXC则主要是利用cgroups来控制资源
移动性 - 用户的实例可以很方便地复制、移动和重建。硬件虚拟化方法提供snapshot和image来实现,docker(主要)利用AUFS实现
安全性 - 这个话题比较大,这里强调是host主机的角度尽量保护container。硬件虚拟化的方法因为虚拟化的水平比较高,用户进程都是在KVM等虚拟机容器中翻译运行的, 然而对于LXC, 用户的进程是lxc-start进程的子进程, 只是在Kernel的namespace中隔离的, 因此需要一些kernel的patch来保证用户的运行环境不会受到来自host主机的恶意入侵, dotcloud(主要是)利用kernel grsec patch解决的.
Linux Namespace (ns)
LXC所实现的隔离性主要是来自kernel的namespace, 其中pid, net, ipc, mnt, uts 等namespace将container的进程, 网络, 消息, 文件系统和hostname 隔离开。
pid namespace
之前提到用户的进程是lxc-start进程的子进程, 不同用户的进程就是通过pidnamespace隔离开的,且不同 namespace 中可以有相同PID。具有以下特征:
每个namespace中的pid是有自己的pid=1的进程(类似/sbin/init进程)
每个namespace中的进程只能影响自己的同一个namespace或子namespace中的进程
因为/proc包含正在运行的进程,因此在container中的pseudo-filesystem的/proc目录只能看到自己namespace中的进程
因为namespace允许嵌套,父namespace可以影响子namespace的进程,所以子namespace的进程可以在父namespace中看到,但是具有不同的pid
正是因为以上的特征,所有的LXC进程在docker中的父进程为docker进程,每个lxc进程具有不同的namespace。同时由于允许嵌套,因此可以很方便的实现 LXC in LXC
net namespace
有了 pid namespace, 每个namespace中的pid能够相互隔离,但是网络端口还是共享host的端口。网络隔离是通过netnamespace实现的,
每个net namespace有独立的 network devices, IP addresses, IP routing tables, /proc/net 目录。这样每个container的网络就能隔离开来。
LXC在此基础上有5种网络类型,docker默认采用veth的方式将container中的虚拟网卡同host上的一个docker bridge连接在一起。
ipc namespace
container中进程交互还是采用linux常见的进程间交互方法(interprocess communication - IPC), 包括常见的信号量、消息队列和共享内存。然而同VM不同,container 的进程间交互实际上还是host上具有相同pid namespace中的进程间交互,因此需要在IPC资源申请时加入namespace信息 - 每个IPC资源有一个唯一的 32bit ID。
mnt namespace
类似chroot,将一个进程放到一个特定的目录执行。mnt namespace允许不同namespace的进程看到的文件结构不同,这样每个 namespace 中的进程所看到的文件目录就被隔离开了。同chroot不同,每个namespace中的container在/proc/mounts的信息只包含所在namespace的mount point。
uts namespace
UTS(“UNIX Time-sharing System”) namespace允许每个container拥有独立的hostname和domain name,
使其在网络上可以被视作一个独立的节点而非Host上的一个进程。
user namespace
每个container可以有不同的 user 和 group id, 也就是说可以以container内部的用户在container内部执行程序而非Host上的用户。
有了以上6种namespace从进程、网络、IPC、文件系统、UTS和用户角度的隔离,一个container就可以对外展现出一个独立计算机的能力,并且不同container从OS层面实现了隔离。
然而不同namespace之间资源还是相互竞争的,仍然需要类似ulimit来管理每个container所能使用的资源 - LXC 采用的是cgroup。[1]
Control Groups (cgroups)
cgroups 实现了对资源的配额和度量。 cgroups 的使用非常简单,提供类似文件的接口,在 /cgroup目录下新建一个文件夹即可新建一个group,在此文件夹中新建task文件,并将pid写入该文件,即可实现对该进程的资源控制。具体的资源配置选项可以在该文件夹中新建子 subsystem ,{子系统前缀}.{资源项} 是典型的配置方法,
如memory.usage_in_bytes 就定义了该group 在subsystem memory中的一个内存限制选项。
另外,cgroups中的 subsystem可以随意组合,一个subsystem可以在不同的group中,也可以一个group包含多个subsystem - 也就是说一个 subsystem。
关于术语定义
A *cgroup* associates a set of tasks with a set of parameters for one
or more subsystems.
A *subsystem* is a module that makes use of the task grouping
facilities provided by cgroups to treat groups of tasks in
particular ways. A subsystem is typically a "resource controller" that
schedules a resource or applies per-cgroup limits, but it may be
anything that wants to act on a group of processes, e.g. a
virtualization subsystem.
我们主要关心cgroups可以限制哪些资源,即有哪些subsystem是我们关心。
cpu : 在cgroup中,并不能像硬件虚拟化方案一样能够定义CPU能力,但是能够定义CPU轮转的优先级,因此具有较高CPU优先级的进程会更可能得到CPU运算。
通过将参数写入cpu.shares,即可定义改cgroup的CPU优先级 - 这里是一个相对权重,而非绝对值。当然在cpu这个subsystem中还有其他可配置项,手册中有详细说明。
cpusets : cpusets 定义了有几个CPU可以被这个group使用,或者哪几个CPU可以供这个group使用。在某些场景下,单CPU绑定可以防止多核间缓存切换,从而提高效率
memory : 内存相关的限制
blkio : block IO相关的统计和限制,byte/operation统计和限制(IOPS等),读写速度限制等,但是这里主要统计的都是同步IO
net_cls, cpuacct , devices , freezer 等其他可管理项。[2]
Linux 容器 (LXC)
借助于namespace的隔离机制和cgroup限额功能,LXC提供了一套统一的API和工具来建立和管理container, LXC利用了如下 kernel 的features:[3]
Kernel namespaces (ipc, uts, mount, pid, network and user)
Apparmor and SELinux profiles
Seccomp policies
Chroots (using pivot_root)
Kernel capabilities
Control groups (cgroups)
LXC 向用户屏蔽了以上 kernel 接口的细节, 提供了如下的组件大大简化了用户的开发和使用工作:
The liblxc library
Several language bindings (python3, lua and Go)
A set of standard tools to control the containers
Container templates
LXC 旨在提供一个共享kernel的 OS 级虚拟化方法,在执行时不用重复加载Kernel, 且container的kernel与host共享,因此可以大大加快container的 启动过程,并显著减少内存消耗。在实际测试中,基于LXC的虚拟化方法的IO和CPU性能几乎接近 baremetal 的性能[4] , 大多数数据有相比 Xen具有优势。当然对于KVM这种也是通过Kernel进行隔离的方式, 性能优势或许不是那么明显, 主要还是内存消耗和启动时间上的差异。在参考文献[5] 中提到了利用iozone进行 Disk IO吞吐量测试KVM反而比LXC要快,而且笔者在device mapping driver下重现同样case的实验中也确实能得到如此结论。参考文献从网络虚拟化中虚拟路由的场景(网络IO和CPU角度)比较了KVM和LXC, 得到结论是KVM在性能和隔离性的平衡上比LXC更优秀 - KVM在吞吐量上略差于LXC, 但CPU的隔离可管理项比LXC更明确。
关于CPU, DiskIO, network IO 和 memory 在KVM和LXC中的比较还是需要更多的实验才能得出可信服的结论。
AUFS
Docker对container的使用基本是建立在LXC基础之上的,然而LXC存在的问题是难以移动 - 难以通过标准化的模板制作、重建、复制和移动 container。
在以VM为基础的虚拟化手段中,有image和snapshot可以用于VM的复制、重建以及移动的功能。想要通过container来实现快速的大规模部署和更新, 这些功能不可或缺。
Docker 正是利用AUFS来实现对container的快速更新 - 在docker0.7中引入了storage driver, 支持AUFS, VFS, device mapper, 也为BTRFS以及ZFS引入提供了可能。 但除了AUFS都未经过dotcloud的线上使用,因此我们还是从AUFS的角度介绍。
AUFS (AnotherUnionFS) 是一种 Union FS, 简单来说就是支持将不同目录挂载到同一个虚拟文件系统下(unite several directories into a single virtual filesystem)的文件系统, 更进一步地, AUFS支持为每一个成员目录(AKA branch)设定'readonly', 'readwrite' 和 'whiteout-able' 权限, 同时AUFS里有一个类似
分层的概念, 对 readonly 权限的branch可以逻辑上进行修改(增量地, 不影响readonly部分的)。通常 Union FS有两个用途, 一方面可以实现不借助 LVM, RAID 将多个disk和挂在到一个目录下, 另一个更常用的就是将一个readonly的branch和一个writeable的branch联合在一起,Live CD正是基于此可以允许在 OS image 不变的基础上允许用户在其上进行一些写操作。Docker在AUFS上构建的container image也正是如此,接下来我们从启动container中的linux为例介绍docker在AUFS特性的运用。
图1
图1
典型的Linux启动到运行需要两个FS - bootfs + rootfs (从功能角度而非文件系统角度)(图1)
bootfs (boot file system) 主要包含 bootloader 和 kernel, bootloader主要是引导加载kernel, 当boot成功后 kernel 被加载到内存中后 bootfs就被umount了.
rootfs (root file system) 包含的就是典型 Linux 系统中的 /dev, /proc, /bin, /etc 等标准目录和文件。
由此可见对于不同的linux发行版, bootfs基本是一致的, rootfs会有差别, 因此不同的发行版可以公用bootfs 如下(图2):
图2
图2
典型的Linux在启动后,首先将 rootfs 置为 readonly, 进行一系列检查, 然后将其切换为 “readwrite” 供用户使用。在docker中,起初也是将 rootfs 以readonly方式加载并检查,然而接下来利用 union mount 的将一个 readwrite 文件系统挂载在 readonly 的rootfs之上,并且允许再次将下层的 file system设定为readonly 并且向上叠加, 这样一组readonly和一个writeable的结构构成一个container的运行目录, 每一个被称作一个Layer。如下(图3):
得益于AUFS的特性, 每一个对readonly层文件/目录的修改都
图3
图3
只会存在于上层的writeable层中。这样由于不存在竞争, 多个container可以共享readonly的layer。
所以docker将readonly的层称作 “image” - 对于container而言整个rootfs都是read-write的,但事实上所有的修改都写入最上层的writeable层中,
image不保存用户状态,可以用于模板、重建和复制。
(图4、5)
图4
图4
图5
图5
上层的image依赖下层的image,因此docker中把下层的image称作父image,没有父image的image称作base image (图6)
图6
图6
因此想要从一个image启动一个container,docker会先加载其父image直到base image,用户的进程运行在writeable的layer中。所有parent image中的数据信息以及
图7
图7
ID、网络和lxc管理的资源限制等具体container的配置,构成一个docker概念上的container。如下(图7):
由此可见,采用AUFS作为docker的container的文件系统,能够提供如下好处:
节省存储空间 - 多个container可以共享base image存储
快速部署 - 如果要部署多个container,base image可以避免多次拷贝
内存更省 - 因为多个container共享base image, 以及OS的disk缓存机制,多个container中的进程命中缓存内容的几率大大增加
升级更方便 - 相比于 copy-on-write 类型的FS,base-image也是可以挂载为可writeable的,可以通过更新base image而一次性更新其之上的container
允许在不更改base-image的同时修改其目录中的文件 - 所有写操作都发生在最上层的writeable层中,这样可以大大增加base image能共享的文件内容。
以上5条 1-3 条可以通过 copy-on-write 的FS实现, 4可以利用其他的union mount方式实现, 5只有AUFS实现的很好。这也是为什么Docker一开始就建立在AUFS之上。
由于AUFS并不会进入linux主干 (According to Christoph Hellwig, linux rejects all union-type filesystems but UnionMount.),
同时要求kernel版本3.0以上(docker推荐3.8及以上),因此在RedHat工程师的帮助下在docker0.7版本中实现了driver机制, AUFS只是其中的一个driver, 在RHEL中采用的则是Device Mapper的方式实现的container文件系统。
GRSEC
grsec是linux kernel安全相关的patch, 用于保护host防止非法入侵。由于其并不是docker的一部分,我们只进行简单的介绍。
grsec可以主要从4个方面保护进程不被非法入侵:
随机地址空间 - 进程的堆区地址是随机的
用只读的memory management unit来管理进程流程, 堆区和栈区内存只包含数据结构/函数/返回地址和数据, 是non-executeable
审计和Log可疑活动
编译期的防护
安全永远是相对的,这些方法只是告诉我们可以从这些角度考虑container类型的安全问题可以关注的方面。
|