// Reserve space for the system stack.
//
//*****************************************************************************
#ifndef STACK_SIZE
#define STACK_SIZE 256
#endif
static unsigned long pulStack[STACK_SIZE];
//*****************************************************************************
//
// A union that describes the entries of the vector table. The union is needed
// since the first entry is the stack pointer and the remainder are function
// pointers.
//
//*****************************************************************************
typedef union
{
void (*pfnHandler)(void);
unsigned long ulPtr;
}
uVectorEntry;
//*****************************************************************************
//
// The minimal vector table for a Cortex M3. Note that the proper constructs
// must be placed on this to ensure that it ends up at physical address
// 0x0000.0000.
//
//*****************************************************************************
__root const uVectorEntry g_pfnVectors[] @ "INTVEC" =
{
{ .ulPtr = (unsigned long)pulStack + sizeof(pulStack) },
// The initial stack pointer
ResetISR, // The reset handler
NmiSR, // The NMI handler
FaultISR, // The hard fault handler
IntDefaultHandler, // The MPU fault handler
IntDefaultHandler, // The bus fault handler
IntDefaultHandler, // The usage fault handler
0, // Reserved
0, // Reserved
0, // Reserved
0, // Reserved
IntDefaultHandler, // SVCall handler
IntDefaultHandler, // Debug monitor handler
0, // Reserved
IntDefaultHandler, // The PendSV handler
IntDefaultHandler, // The SysTick handler
IntDefaultHandler, // GPIO Port A
IntDefaultHandler, // GPIO Port B
IntDefaultHandler, // GPIO Port C
GPIO_Port_D_ISR, // GPIO Port D
IntDefaultHandler, // GPIO Port E
IntDefaultHandler, // UART0 Rx and Tx
IntDefaultHandler, // UART1 Rx and Tx
IntDefaultHandler, // SSI Rx and Tx
IntDefaultHandler, // I2C Master and Slave
IntDefaultHandler, // PWM Fault
IntDefaultHandler, // PWM Generator 0
IntDefaultHandler, // PWM Generator 1
IntDefaultHandler, // PWM Generator 2
IntDefaultHandler, // Quadrature Encoder
IntDefaultHandler, // ADC Sequence 0
IntDefaultHandler, // ADC Sequence 1
IntDefaultHandler, // ADC Sequence 2
IntDefaultHandler, // ADC Sequence 3
IntDefaultHandler, // Watchdog timer
IntDefaultHandler, // Timer 0 subtimer A
IntDefaultHandler, // Timer 0 subtimer B
IntDefaultHandler, // Timer 1 subtimer A
IntDefaultHandler, // Timer 1 subtimer B
IntDefaultHandler, // Timer 2 subtimer A
IntDefaultHandler, // Timer 2 subtimer B
IntDefaultHandler, // Analog Comparator 0
IntDefaultHandler, // Analog Comparator 1
IntDefaultHandler, // Analog Comparator 2
IntDefaultHandler, // System Control (PLL, OSC, BO)
IntDefaultHandler, // FLASH Control
IntDefaultHandler, // GPIO Port F
IntDefaultHandler, // GPIO Port G
IntDefaultHandler, // GPIO Port H
IntDefaultHandler, // UART2 Rx and Tx
IntDefaultHandler, // SSI1 Rx and Tx
IntDefaultHandler, // Timer 3 subtimer A
IntDefaultHandler, // Timer 3 subtimer B
IntDefaultHandler, // I2C1 Master and Slave
IntDefaultHandler, // Quadrature Encoder 1
IntDefaultHandler, // CAN0
IntDefaultHandler, // CAN1
IntDefaultHandler, // CAN2
IntDefaultHandler, // Ethernet
IntDefaultHandler // Hibernate
};
//*****************************************************************************
//
// The following are constructs created by the linker, indicating where the
// the "data" and "bss" segments reside in memory. The initializers for the
// for the "data" segment resides immediately following the "text" segment.
//
//*****************************************************************************
#pragma segment="DATA_ID"
#pragma segment="DATA_I"
#pragma segment="DATA_Z"
//*****************************************************************************
//
// This is the code that gets called when the processor first starts execution
// following a reset event. Only the absolutely necessary set is performed,
// after which the application supplied main() routine is called. Any fancy
// actions (such as making decisions based on the reset cause register, and
// resetting the bits in that register) are left solely in the hands of the
// application.
//
//*****************************************************************************
void
ResetISR(void)
{
unsigned long *pulSrc, *pulDest, *pulEnd;
//
// Copy the data segment initializers from flash to SRAM.
//
pulSrc = __segment_begin("DATA_ID");
pulDest = __segment_begin("DATA_I");
pulEnd = __segment_end("DATA_I");
while(pulDest < pulEnd)
{
*pulDest++ = *pulSrc++;
}
//
// Zero fill the bss segment.
//
pulDest = __segment_begin("DATA_Z");
pulEnd = __segment_end("DATA_Z");
while(pulDest < pulEnd)
{
*pulDest++ = 0;
}
//
// Call the application's entry point.
//
main();
}
//*****************************************************************************
//
// This is the code that gets called when the processor receives a NMI. This
// simply enters an infinite loop, preserving the system state for examination
// by a debugger.
//
//*****************************************************************************
static void
NmiSR(void)
{
//
// Enter an infinite loop.
//
while(1)
{
}
}
//*****************************************************************************
//
// This is the code that gets called when the processor receives a fault
// interrupt. This simply enters an infinite loop, preserving the system state
// for examination by a debugger.
//
//*****************************************************************************
static void
FaultISR(void)
{
//
// Enter an infinite loop.
//
while(1)
{
}
}
//*****************************************************************************
//
// This is the code that gets called when the processor receives an unexpected
// interrupt. This simply enters an infinite loop, preserving the system state
// for examination by a debugger.
//
//*****************************************************************************
static void
IntDefaultHandler(void)
{
//
// Go into an infinite loop.
//
while(1)
{
}
} |