如题,有个工程需要用到定时器触发ADC采样多路数据(为了进行FFT),然后弄了好几天,资料看了,论坛也搜了,但是好像就是不行。 以下是我自己的代码,本意是ADC进过TB0触发转换两个通道的数据,但是,仿真的时候只能进第一个中断,求助是什么问题,
void IntiSysSample(void)
{
//设置ADC的GPIO DEMO是A1/P1.1 A7/P2.4
GPIO_setAsPeripheralModuleFunctionOutputPin(GPIO_PORT_P1,GPIO_PIN1,GPIO_TERNARY_MODULE_FUNCTION);
GPIO_setAsPeripheralModuleFunctionOutputPin(GPIO_PORT_P4,GPIO_PIN2,GPIO_TERNARY_MODULE_FUNCTION);
//设置ADCB
ADC12_B_init( ADC12_B_BASE,
//ADC12_B_SAMPLEHOLDSOURCE_SC,
ADC12_B_SAMPLEHOLDSOURCE_3,
ADC12_B_CLOCKSOURCE_SMCLK,//ADC12_B_CLOCKSOURCE_ADC12OSC, //ADC模块时钟 参见库函数参数
ADC12_B_CLOCKDIVIDER_1, //分频数
ADC12_B_CLOCKPREDIVIDER__1, //分频数
ADC12_B_NOINTCH);
ADC12_B_enable(ADC12_B_BASE); //使能ADC
ADC12_B_setupSamplingTimer(ADC12_B_BASE,
ADC12_B_CYCLEHOLD_128_CYCLES, //ADC转换周期根据实际调整
ADC12_B_CYCLEHOLD_4_CYCLES, //ADC转换周期根据实际调整
ADC12_B_MULTIPLESAMPLESENABLE//ADC12_B_MULTIPLESAMPLESDISABLE //ADC12_B_MULTIPLESAMPLESDISABLE //ADC12_B_MULTIPLESAMPLESDISABLE 连续转换使能,多通道
);
ADC12_B_memoryConfigure(ADC12_B_BASE,
ADC12_B_MEMORY_0,
ADC12_B_INPUT_A1,
ADC12_B_VREFPOS_INTBUF_VREFNEG_VSS,
ADC12_B_NOTENDOFSEQUENCE,//ADC12_B_ENDOFSEQUENCE, //转换结束通道ADC12_B_NOTENDOFSEQUENCE
ADC12_B_WINDOW_COMPARATOR_DISABLE,
ADC12_B_DIFFERENTIAL_MODE_DISABLE);
ADC12_B_memoryConfigure(ADC12_B_BASE,
ADC12_B_MEMORY_1,
ADC12_B_INPUT_A10,
ADC12_B_VREFPOS_INTBUF_VREFNEG_VSS,
ADC12_B_ENDOFSEQUENCE,//ADC12_B_ENDOFSEQUENCE, //转换结束通道ADC12_B_NOTENDOFSEQUENCE
ADC12_B_WINDOW_COMPARATOR_DISABLE,
ADC12_B_DIFFERENTIAL_MODE_DISABLE);
//以下是使用TIMERB的TB0的CCR1触发ADC中断
//P2.6/TB1 option select Output direction
//TIMRB的TB0输出,用来触发ADC转换
//GPIO_setAsPeripheralModuleFunctionOutputPin(GPIO_PORT_P2, GPIO_PIN6,GPIO_PRIMARY_MODULE_FUNCTION);
//Start timer
TIMER_B_configureUpMode(TIMER_B0_BASE,
TIMER_B_CLOCKSOURCE_SMCLK,
TIMER_B_CLOCKSOURCE_DIVIDER_1,
511,
TIMER_B_TBIE_INTERRUPT_DISABLE,
TIMER_B_CCIE_CCR0_INTERRUPT_DISABLE,
TIMER_B_DO_CLEAR
);
TIMER_B_startCounter(TIMER_B0_BASE,
TIMER_B_UP_MODE
);
//Initialize compare mode to generate PWM1
TIMER_B_initCompare(TIMER_B0_BASE,
TIMER_B_CAPTURECOMPARE_REGISTER_1,
TIMER_B_CAPTURECOMPARE_INTERRUPT_DISABLE,
TIMER_B_OUTPUTMODE_RESET_SET,
383
);
//最后开启ADC转换中断
ADC12_B_clearInterrupt(ADC12_B_BASE,
0,
ADC12_B_IFG0|ADC12_B_IFG1
);
//Enable memory buffer 0 interrupt
ADC12_B_enableInterrupt(ADC12_B_BASE,
ADC12_B_IE0|ADC12_B_IE1,
0,
0);
__delay_cycles(75); // reference settling ~75us
ADC12_B_startConversion(ADC12_B_BASE,ADC12_B_MEMORY_0,
// ADC12_B_REPEATED_SINGLECHANNEL
ADC12_B_REPEATED_SEQOFCHANNELS
);
/// __bis_SR_register(LPM0_bits +GIE);
__bis_SR_register(GIE);
}
#if defined(__TI_COMPILER_VERSION__) || defined(__IAR_SYSTEMS_ICC__)
#pragma vector=ADC12_VECTOR
__interrupt
#elif defined(__GNUC__)
__attribute__((interrupt(ADC12_VECTOR)))
#endif
void ADC12_ISR(void)
{
switch (__even_in_range(ADC12IV, 12)) {
case 0: break; // Vector 0: No interrupt
case 2: break; // Vector 2: ADC12BMEMx Overflow
case 4: break; // Vector 4: Conversion time overflow
case 6: break; // Vector 6: ADC12BHI
case 8: break; // Vector 8: ADC12BLO
case 10: break; // Vector 10: ADC12BIN
case 12: // Vector 12: ADC12BMEM0 Interrupt
if (ADC12_B_getResults(ADC12_B_BASE, ADC12_B_MEMORY_0) >= 0x6B4)
{
//Set P1.0 LED on
GPIO_setOutputHighOnPin(
GPIO_PORT_P1,
GPIO_PIN0
);
}
else {
//Set P1.0 LED off
GPIO_setOutputLowOnPin(
GPIO_PORT_P1,
GPIO_PIN0
);
}
ADC12IFGR0 &= ~ADC12IFG0;
// __bic_SR_register_on_exit(LPM0_bits); // Exit active CPU
break; // Clear CPUOFF bit from 0(SR)
case 14: {
// __bic_SR_register_on_exit(LPM0_bits); // Exit active CPU
if (ADC12_B_getResults(ADC12_B_BASE, ADC12_B_MEMORY_1) >= 0x6B4) {
//Set P1.0 LED on
GPIO_setOutputHighOnPin(
GPIO_PORT_P1,
GPIO_PIN0
);
}else {
//Set P1.0 LED off
GPIO_setOutputLowOnPin(
GPIO_PORT_P1,
GPIO_PIN0
);
}
ADC12IFGR1 &= ~ADC12IFG1;
}break; // Vector 14: ADC12BMEM1
case 16: break; // Vector 16: ADC12BMEM2
case 18: break; // Vector 18: ADC12BMEM3
case 20: break; // Vector 20: ADC12BMEM4
case 22: break; // Vector 22: ADC12BMEM5
case 24: break; // Vector 24: ADC12BMEM6
case 26: break; // Vector 26: ADC12BMEM7
case 28: break; // Vector 28: ADC12BMEM8
case 30: break; // Vector 30: ADC12BMEM9
case 32: break; // Vector 32: ADC12BMEM10
case 34: break; // Vector 34: ADC12BMEM11
case 36: break; // Vector 36: ADC12BMEM12
case 38: break; // Vector 38: ADC12BMEM13
case 40: break; // Vector 40: ADC12BMEM14
case 42: break; // Vector 42: ADC12BMEM15
case 44: break; // Vector 44: ADC12BMEM16
case 46: break; // Vector 46: ADC12BMEM17
case 48: break; // Vector 48: ADC12BMEM18
case 50: break; // Vector 50: ADC12BMEM19
case 52: break; // Vector 52: ADC12BMEM20
case 54: break; // Vector 54: ADC12BMEM21
case 56: break; // Vector 56: ADC12BMEM22
case 58: break; // Vector 58: ADC12BMEM23
case 60: break; // Vector 60: ADC12BMEM24
case 62: break; // Vector 62: ADC12BMEM25
case 64: break; // Vector 64: ADC12BMEM26
case 66: break; // Vector 66: ADC12BMEM27
case 68: break; // Vector 68: ADC12BMEM28
case 70: break; // Vector 70: ADC12BMEM29
case 72: break; // Vector 72: ADC12BMEM30
case 74: break; // Vector 74: ADC12BMEM31
case 76: break; // Vector 76: ADC12BRDY
default: break;
}
}
|