/**************************************************************************//**
* [url=home.php?mod=space&uid=288409]@file[/url] main.c
* [url=home.php?mod=space&uid=895143]@version[/url] V2.0
* $Revision: 4 $
* $Date: 15/03/04 9:49a $
* [url=home.php?mod=space&uid=247401]@brief[/url] Demonstrate how to communicate with an off-chip SPI slave device. This sample code needs to work with SPI_SlaveMode.
*
* @note
* Copyright (C) 2015 Nuvoton Technology Corp. All rights reserved.
*
******************************************************************************/
#include <stdio.h>
#include "NUC505Series.h"
#define TEST_COUNT 16
uint32_t g_au32SourceData[TEST_COUNT];
uint32_t g_au32DestinationData[TEST_COUNT];
volatile uint32_t g_u32TxDataCount;
volatile uint32_t g_u32RxDataCount;
/* Function prototype declaration */
void SYS_Init(void);
void UART0_Init(void);
void SPI1_Init(void);
/* ------------- */
/* Main function */
/* ------------- */
int main(void)
{
uint32_t u32DataCount;
/* Init System, IP clock and multi-function I/O. */
SYS_Init();
/* Init UART0 to 115200-8n1 for print message */
UART0_Init();
/* Init SPI1, IP clock and multi-function I/O */
SPI1_Init();
printf("\n\n");
printf("+--------------------------------------------------------+\n");
printf("| SPI Master Mode Sample Code |\n");
printf("+--------------------------------------------------------+\n");
printf("\n");
printf("Configure SPI1 as a master.\n");
printf("Bit length of a transaction: 32\n");
printf("The I/O connection for SPI1:\n");
printf(" SPI1_SS (PB.10)\n SPI1_CLK (PB.11)\n");
printf(" SPI1_MOSI (PB.12)\n SPI1_MISO (PB.13)\n\n");
printf("SPI controller will transfer %d data to a off-chip slave device.\n", TEST_COUNT);
printf("In the meanwhile the SPI controller will receive %d data from the off-chip slave device.\n", TEST_COUNT);
printf("After the transfer is done, the %d received data will be printed out.\n", TEST_COUNT);
printf("The SPI master configuration is ready.\n");
for(u32DataCount = 0; u32DataCount < TEST_COUNT; u32DataCount++)
{
/* Write the initial value to source buffer */
g_au32SourceData[u32DataCount] = 0x00550000 + u32DataCount;
/* Clear destination buffer */
g_au32DestinationData[u32DataCount] = 0;
}
SPI_ENABLE(SPI1);
printf("Before starting the data transfer, make sure the slave device is ready. Press any key to start the transfer.");
getchar();
printf("\n");
/* Set TX FIFO threshold, enable TX FIFO threshold interrupt and RX FIFO time-out interrupt */
SPI_SetFIFO(SPI1, 4, 4);
SPI_EnableInt(SPI1, SPI_FIFO_TXTH_INT_MASK | SPI_FIFO_RXTO_INT_MASK);
g_u32TxDataCount = 0;
g_u32RxDataCount = 0;
NVIC_EnableIRQ(SPI1_IRQn);
/* Wait for transfer done */
while(g_u32RxDataCount < TEST_COUNT);
/* Print the received data */
printf("Received data:\n");
for(u32DataCount = 0; u32DataCount < TEST_COUNT; u32DataCount++)
{
printf("%d:\t0x%X\n", u32DataCount, g_au32DestinationData[u32DataCount]);
}
/* Disable TX FIFO threshold interrupt and RX FIFO time-out interrupt */
SPI_DisableInt(SPI1, SPI_FIFO_TXTH_INT_MASK | SPI_FIFO_RXTO_INT_MASK);
NVIC_DisableIRQ(SPI1_IRQn);
printf("The data transfer was done.\n");
printf("\n\nExit SPI driver sample code.\n");
/* Disable SPI1 peripheral clock */
SPI_Close(SPI1);
while(1);
}
void SPI1_IRQHandler(void)
{
uint32_t u32Tmp;
/* Check RX EMPTY flag */
while(SPI_GET_RX_FIFO_EMPTY_FLAG(SPI1) == 0)
{
u32Tmp = g_u32RxDataCount;
/* Read RX FIFO */
g_au32DestinationData[u32Tmp++] = SPI_READ_RX(SPI1);
g_u32RxDataCount = u32Tmp;
}
/* Check TX FULL flag and TX data count */
while((SPI_GET_TX_FIFO_FULL_FLAG(SPI1) == 0) && (g_u32TxDataCount < TEST_COUNT))
{
/* Write to TX FIFO */
SPI_WRITE_TX(SPI1, g_au32SourceData[g_u32TxDataCount++]);
}
if(g_u32TxDataCount >= TEST_COUNT)
SPI_DisableInt(SPI1, SPI_FIFO_TXTH_INT_MASK); /* Disable TX FIFO threshold interrupt */
/* Check the RX FIFO time-out interrupt flag */
if(SPI_GetIntFlag(SPI1, SPI_FIFO_RXTO_INT_MASK))
{
/* If RX FIFO is not empty, read RX FIFO. */
while(SPI_GET_RX_FIFO_EMPTY_FLAG(SPI1) == 0)
{
u32Tmp = g_u32RxDataCount;
g_au32DestinationData[u32Tmp++] = SPI_READ_RX(SPI1);
g_u32RxDataCount = u32Tmp;
}
}
}
void SYS_Init(void)
{
/*---------------------------------------------------------------------------------------------------------*/
/* Init System Clock */
/*---------------------------------------------------------------------------------------------------------*/
/* Unlock protected registers */
//SYS_UnlockReg();
/* Enable XTAL */
CLK->PWRCTL |= CLK_PWRCTL_HXTEN_Msk;
CLK_SetCoreClock(FREQ_96MHZ);
/* PCLK divider */
CLK_SetModuleClock(PCLK_MODULE, NULL, 1);
/* Lock protected registers */
//SYS_LockReg();
}
void UART0_Init(void)
{
/* Enable UART0 Module clock */
CLK_EnableModuleClock(UART0_MODULE);
/* UART0 module clock from EXT */
CLK_SetModuleClock(UART0_MODULE, CLK_UART0_SRC_EXT, 0);
/* Reset IP */
SYS_ResetModule(UART0_RST);
/* Configure UART0 and set UART0 Baud-rate */
UART_Open(UART0, 115200);
/*---------------------------------------------------------------------------------------------------------*/
/* Init I/O Multi-function */
/*---------------------------------------------------------------------------------------------------------*/
/* Configure multi-function pins for UART0 RXD and TXD */
SYS->GPB_MFPL = (SYS->GPB_MFPL & (~SYS_GPB_MFPL_PB0MFP_Msk) ) | SYS_GPB_MFPL_PB0MFP_UART0_TXD;
SYS->GPB_MFPL = (SYS->GPB_MFPL & (~SYS_GPB_MFPL_PB1MFP_Msk) ) | SYS_GPB_MFPL_PB1MFP_UART0_RXD;
}
void SPI1_Init(void)
{
/* Enable SPI1 Module clock */
CLK_EnableModuleClock(SPI1_MODULE);
/* SPI1 module clock from EXT */
CLK_SetModuleClock(SPI1_MODULE, CLK_SPI1_SRC_PLL, 0);
/* Reset IP */
SYS_ResetModule(SPI1_RST);
/*---------------------------------------------------------------------------------------------------------*/
/* Init I/O Multi-function */
/*---------------------------------------------------------------------------------------------------------*/
/* Configure multi-function pins for SPI1 */
SYS->GPB_MFPH = (SYS->GPB_MFPH & (~SYS_GPB_MFPH_PB10MFP_Msk) ) | SYS_GPB_MFPH_PB10MFP_SPI1_SS;
SYS->GPB_MFPH = (SYS->GPB_MFPH & (~SYS_GPB_MFPH_PB11MFP_Msk) ) | SYS_GPB_MFPH_PB11MFP_SPI1_CLK;
SYS->GPB_MFPH = (SYS->GPB_MFPH & (~SYS_GPB_MFPH_PB12MFP_Msk) ) | SYS_GPB_MFPH_PB12MFP_SPI1_MOSI;
SYS->GPB_MFPH = (SYS->GPB_MFPH & (~SYS_GPB_MFPH_PB13MFP_Msk) ) | SYS_GPB_MFPH_PB13MFP_SPI1_MISO;
/*---------------------------------------------------------------------------------------------------------*/
/* Init SPI */
/*---------------------------------------------------------------------------------------------------------*/
/* Configure SPI1 as a master, SPI clock rate 200 KHz,
clock idle low, 32-bit transaction, drive output on falling clock edge and latch input on rising edge. */
SPI_Open(SPI1, SPI_MASTER, SPI_MODE_0, 32, 200000);
/* Enable the automatic hardware slave selection function. Select the SPI1_SS pin and configure as low-active. */
SPI_EnableAutoSS(SPI1, SPI_SS, SPI_SS_ACTIVE_LOW);
}
/*** (C) COPYRIGHT 2015 Nuvoton Technology Corp. ***/
|