打印

求助关于卡尔曼滤波

[复制链接]
5743|7
手机看帖
扫描二维码
随时随地手机跟帖
跳转到指定楼层
楼主
wang1987|  楼主 | 2011-2-26 10:56 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
刚开始学卡尔曼滤波,一直是一知半解,下面的源码注释是我自己加上的,但不知道对不对,求大虾们,给我注释完整,并在关键的地方能有个说明,先谢谢了,小弟拜上!
float kalmanUpdate(const float gyro_m,const float incAngle)//只读变量不可以修改
{              //         陀螺仪                角度
        float K_0;//含有卡尔曼增益的另外一个函数,用于计算最优估计值
        float K_1;//含有卡尔曼增益的函数,用于计算最优估计值的偏差
        float Y_0;
        float Y_1;
        
        float Rate;
        float Pdot[4];
        float angle_err;//角度偏量
        float E;
               
        static float angle = 0;            //下时刻最优估计值角度
        static float q_bias = 0;        //最优估计值的偏差                 
        static float P[2][2] = {{ 1, 0 }, { 0, 1 }};
                  
        Rate = gyro_m - q_bias;
                                                                  //#define dt                  0.0015//滞后
                                                              //#define R_angle          0.69
                                                              //#define Q_angle          0.0001
                                                               //#define Q_gyro           0.0003 //卡尔曼滤波参数
         
        Pdot[0] = Q_angle - P[0][1] - P[1][0]; //卡尔曼增益矩阵        
        Pdot[1] = - P[1][1];                        
        Pdot[2] = - P[1][1];                                 
        Pdot[3] = Q_gyro;                        

        angle += Rate * dt;

        P[0][0] += Pdot[0] * dt; //计算协方差矩阵
        P[0][1] += Pdot[1] * dt;
        P[1][0] += Pdot[2] * dt;
        P[1][1] += Pdot[3] * dt;
  
        angle_err = incAngle - angle;

        E = R_angle + P[0][0];
        K_0 = P[0][0] / E;
        K_1 = P[1][0] / E;

        Y_0 = P[0][0];   
        Y_1 = P[0][1];
  
        P[0][0] -= K_0 * Y_0; //跟新协方差矩阵
        P[0][1] -= K_0 * Y_1;
        P[1][0] -= K_1 * Y_0;
        P[1][1] -= K_1 * Y_1;


        angle += K_0 * angle_err; //给出最优估计值
        q_bias += K_1 * angle_err;//跟新最优估计值偏差

        return angle;
}

相关帖子

沙发
wang1987|  楼主 | 2011-3-1 16:31 | 只看该作者
求解啊

使用特权

评论回复
板凳
Chaos_zc| | 2011-8-9 23:06 | 只看该作者
本帖最后由 Chaos_zc 于 2011-8-9 23:08 编辑

貌似是好久以前的帖了,其实我也一知半解,不过确实花了很多时间在kalman滤波上面,权当探讨一下,兄弟有什么新的见解也请不吝赐教:
 
// float gyro_m:陀螺仪测得的量(角速度)
//float incAngle:加计测得的角度值

#define dt                  0.0015//卡尔曼滤波采样频率
#define R_angle          0.69 //测量噪声的协方差(即是测量偏差)
#define Q_angle          0.0001//过程噪声的协方差
#define Q_gyro           0.0003 //过程噪声的协方差  过程噪声协方差为一个一行两列矩阵

float kalmanUpdate(const float gyro_m,const float incAngle  
{         
        float K_0;//含有卡尔曼增益的另外一个函数,用于计算最优估计值
        float K_1;//含有卡尔曼增益的函数,用于计算最优估计值的偏差
        float Y_0;
        float Y_1;
        
        float Rate;//去除偏差后的角速度
        float Pdot[4];//过程协方差矩阵的微分矩阵
        float angle_err;//角度偏量
        float E;//计算的过程量
               
        static float angle = 0;            //下时刻最优估计值角度
        static float q_bias = 0;        //陀螺仪的偏差                 
        static float P[2][2] = {{ 1, 0 }, { 0, 1 }};//过程协方差矩阵
                  
        Rate = gyro_m - q_bias;
  
        //计算过程协方差矩阵的微分矩阵     
        Pdot[0] = Q_angle - P[0][1] - P[1][0];         
        Pdot[1] = - P[1][1];                        
        Pdot[2] = - P[1][1];                                 
        Pdot[3] = Q_gyro;                        

        angle += Rate * dt; //角速度积分得出角度

        P[0][0] += Pdot[0] * dt; //计算协方差矩阵
        P[0][1] += Pdot[1] * dt;
        P[1][0] += Pdot[2] * dt;
        P[1][1] += Pdot[3] * dt;
  
        angle_err = incAngle - angle; //计算角度偏差

        E = R_angle + P[0][0];
        K_0 = P[0][0] / E; //计算卡尔曼增益
        K_1 = P[1][0] / E;

        Y_0 = P[0][0];   
        Y_1 = P[0][1];
  
        P[0][0] -= K_0 * Y_0; //跟新协方差矩阵
        P[0][1] -= K_0 * Y_1;
        P[1][0] -= K_1 * Y_0;
        P[1][1] -= K_1 * Y_1;


        angle += K_0 * angle_err; //给出最优估计值
        q_bias += K_1 * angle_err;//跟新最优估计值偏差

        return angle;

使用特权

评论回复
地板
Chaos_zc| | 2011-8-9 23:11 | 只看该作者
看懂英文的话这个应该解释的比较清楚,虽然有点长,但很有价值。感觉卡尔曼滤波确实很难,看了之后可以交流一下。


#include "ars.h"



#include <math.h>


/*
* Our covariance matrix. This is updated at every time step to
* determine how well the sensors are tracking the actual state.
*/
static float P[2][2] = {
{ 1, 0 },
{ 0, 1 },
};


/*
* Our two states, the angle and the gyro bias. As a byproduct of computing
* the angle, we also have an unbiased angular rate available. These are
* read-only to the user of the module.
*/
float angle;
float q_bias;
float rate;


/*
* R represents the measurement covariance noise. In this case,
* it is a 1x1 matrix that says that we expect 0.3 rad jitter
* from the accelerometer.
*/
static const float R_angle = 0.3;


/*
* Q is a 2x2 matrix that represents the process covariance noise.
* In this case, it indicates how much we trust the acceleromter
* relative to the gyros.
*/
static const float Q_angle = 0.001;
static const float Q_gyro = 0.003;


/*
* state_update is called every dt with a biased gyro measurement
* by the user of the module. It updates the current angle and
* rate estimate.
*
* The pitch gyro measurement should be scaled into real units, but
* does not need any bias removal. The filter will track the bias.
*
* Our state vector is:
*
* X = [ angle, gyro_bias ]
*
* It runs the state estimation forward via the state functions:
*
* Xdot = [ angle_dot, gyro_bias_dot ]
*
* angle_dot = gyro - gyro_bias
* gyro_bias_dot = 0
*
* And updates the covariance matrix via the function:
*
* Pdot = A*P + P*A' + Q
*
* A is the Jacobian of Xdot with respect to the states:
*
* A = [ d(angle_dot)/d(angle) d(angle_dot)/d(gyro_bias) ]
* [ d(gyro_bias_dot)/d(angle) d(gyro_bias_dot)/d(gyro_bias) ]
*
* = [ 0 -1 ]
* [ 0 0 ]
*
* Due to the small CPU available on the microcontroller, we've
* hand optimized the C code to only compute the terms that are
* explicitly non-zero, as well as expanded out the matrix math
* to be done in as few steps as possible. This does make it harder
* to read, debug and extend, but also allows us to do this with
* very little CPU time.
*/
void ars_predict(float gyro, float dt)
{
/* Unbias our gyro */
const float q = gyro - q_bias;

/*
* Compute the derivative of the covariance matrix
*
* Pdot = A*P + P*A' + Q
*
* We've hand computed the expansion of A = [ 0 -1, 0 0 ] multiplied
* by P and P multiplied by A' = [ 0 0, -1, 0 ]. This is then added
* to the diagonal elements of Q, which are Q_angle and Q_gyro.
*/
const float Pdot[2 * 2] = {
Q_angle - P[0][1] - P[1][0], /* 0,0 */
- P[1][1], /* 0,1 */
- P[1][1], /* 1,0 */
Q_gyro /* 1,1 */
};

/* Store our unbias gyro estimate */
rate = q;

/*
* Update our angle estimate
* angle += angle_dot * dt
* += (gyro - gyro_bias) * dt
* += q * dt
*/
angle += q * dt;

/* Update the covariance matrix */
P[0][0] += Pdot[0] * dt;
P[0][1] += Pdot[1] * dt;
P[1][0] += Pdot[2] * dt;
P[1][1] += Pdot[3] * dt;
}


/*
* kalman_update is called by a user of the module when a new
* accelerometer measurement is available. ax_m and az_m do not
* need to be scaled into actual units, but must be zeroed and have
* the same scale.
*
* This does not need to be called every time step, but can be if
* the accelerometer data are available at the same rate as the
* rate gyro measurement.
*
* For a two-axis accelerometer mounted perpendicular to the rotation
* axis, we can compute the angle for the full 360 degree rotation
* with no linearization errors by using the arctangent of the two
* readings.
*
* As commented in state_update, the math here is simplified to
* make it possible to execute on a small microcontroller with no
* floating point unit. It will be hard to read the actual code and
* see what is happening, which is why there is this extensive
* comment block.
*
* The C matrix is a 1x2 (measurements x states) matrix that
* is the Jacobian matrix of the measurement value with respect
* to the states. In this case, C is:
*
* C = [ d(angle_m)/d(angle) d(angle_m)/d(gyro_bias) ]
* = [ 1 0 ]
*
* because the angle measurement directly corresponds to the angle
* estimate and the angle measurement has no relation to the gyro
* bias.
*/
float
ars_update(const float angle_m)
{
/* Compute our measured angle and the error in our estimate */
const float angle_err = angle_m - angle;

/*
* C_0 shows how the state measurement directly relates to
* the state estimate.
*
* The C_1 shows that the state measurement does not relate
* to the gyro bias estimate. We don't actually use this, so
* we comment it out.
*/
const float C_0 = 1;
/* const float C_1 = 0; */

/*
* PCt<2,1> = P<2,2> * C'<2,1>, which we use twice. This makes
* it worthwhile to precompute and store the two values.
* Note that C[0,1] = C_1 is zero, so we do not compute that
* term.
*/
const float PCt_0 = C_0 * P[0][0]; /* + C_1 * P[0][1] = 0 */
const float PCt_1 = C_0 * P[1][0]; /* + C_1 * P[1][1] = 0 */

/*
* Compute the error estimate. From the Kalman filter paper:
*
* E = C P C' + R
*
* Dimensionally,
*
* E<1,1> = C<1,2> P<2,2> C'<2,1> + R<1,1>
*
* Again, note that C_1 is zero, so we do not compute the term.
*/
const float E =
R_angle
+ C_0 * PCt_0
/* + C_1 * PCt_1 = 0 */
;

/*
* Compute the Kalman filter gains. From the Kalman paper:
*
* K = P C' inv(E)
*
* Dimensionally:
*
* K<2,1> = P<2,2> C'<2,1> inv(E)<1,1>
*
* Luckilly, E is <1,1>, so the inverse of E is just 1/E.
*/
const float K_0 = PCt_0 / E;
const float K_1 = PCt_1 / E;

/*
* Update covariance matrix. Again, from the Kalman filter paper:
*
* P = P - K C P
*
* Dimensionally:
*
* P<2,2> -= K<2,1> C<1,2> P<2,2>
*
* We first compute t<1,2> = C P. Note that:
*
* t[0,0] = C[0,0] * P[0,0] + C[0,1] * P[1,0]
*
* But, since C_1 is zero, we have:
*
* t[0,0] = C[0,0] * P[0,0] = PCt[0,0]
*
* This saves us a floating point multiply.
*/
const float t_0 = PCt_0; /* C_0 * P[0][0] + C_1 * P[1][0] */
const float t_1 = C_0 * P[0][1]; /* + C_1 * P[1][1] = 0 */

P[0][0] -= K_0 * t_0;
P[0][1] -= K_0 * t_1;
P[1][0] -= K_1 * t_0;
P[1][1] -= K_1 * t_1;

/*
* Update our state estimate. Again, from the Kalman paper:
*
* X += K * err
*
* And, dimensionally,
*
* X<2> = X<2> + K<2,1> * err<1,1>
*
* err is a measurement of the difference in the measured state
* and the estimate state. In our case, it is just the difference
* between the two accelerometer measured angle and our estimated
* angle.
*/
angle += K_0 * angle_err;
q_bias += K_1 * angle_err;

return angle;
}

使用特权

评论回复
5
干洗牛河| | 2011-11-14 20:38 | 只看该作者
#define dt                  0.0015//卡尔曼滤波采样频率

#define R_angle          0.69 //测量噪声的协方差(即是测量偏差)

#define Q_angle          0.0001//过程噪声的协方差

#define Q_gyro           0.0003 //过程噪声的协方差  过程噪声协方差为一个一行两列矩阵


请问上述那些值如何得出滴?:)

使用特权

评论回复
6
Periodic| | 2011-12-14 20:48 | 只看该作者
MARK

使用特权

评论回复
7
wang1987|  楼主 | 2011-12-21 17:32 | 只看该作者
4# Chaos_zc
谢谢兄弟了,卡尔曼这个东东要是完全理解,需要有很深的数学知识

使用特权

评论回复
8
半城夜| | 2015-6-4 11:40 | 只看该作者
请问各位大大
卡尔曼滤波里面

#define dt                  0.02//卡尔曼滤波采样频率

#define R_angle          0.5 //测量噪声的协方差(即是测量偏差)

#define Q_angle          0.0001//过程噪声的协方差

#define Q_gyro           0.0003 //过程噪声的协方差  
这几个值怎么确定?是都要调吗?

使用特权

评论回复
发新帖 我要提问
您需要登录后才可以回帖 登录 | 注册

本版积分规则

17

主题

87

帖子

0

粉丝