程序编译没有错误,但是数码管不能刷新显示。在Debug 的时候按下暂停键就会刷新一下显示最新的计数值CpuTimer0.InterruptCount。求大神解答,程序如下
#include "DSP28x_Project.h" // Device Headerfile and Examples Include File
// Prototype statements for functions found within this file.
interrupt void cpu_timer0_isr(void);
interrupt void cpu_timer1_isr(void);
interrupt void cpu_timer2_isr(void);
void InitTimerGpio(void);
interrupt void spiTxFifoIsr(void);
interrupt void spiRxFifoIsr(void);
void spi_fifo_init(void);
void delay_loop(void);
Uint16 Led_lib[] = {0x42, 0xf3, 0x86, 0xa2, 0x33, 0x2a, 0x0a, 0xf2, 0x02, 0x22, \
0x40, 0xf1, 0x84, 0xa0, 0x31, 0x28, 0x08, 0xf0, 0x00, 0x20, \
0x1e, 0x0e, 0x0f, 0xbf, 0x23, 0x9b, 0x8b}; //小LED字库
Uint16 Voltage1[512];
Uint16 Voltage2[512];
Uint32 Voltage = 0;
Uint16 Adc_Isr_Count;
Uint16 sdata[2]; // Send data buffer
Uint16 rdata[2]; // Receive data buffer
Uint16 rdata_point; // Keep track of where we are
// in the data stream to check received data
Uint16 sdata_point;
Uint16 sdata_point_unm;
int m=0;
void main(void)
{
int i;
// Step 1. Initialize System Control:
// PLL, WatchDog, enable Peripheral Clocks
// This example function is found in the DSP2802x_SysCtrl.c file.
InitSysCtrl();
// Step 2. Initalize GPIO:
// This example function is found in the DSP2802x_Gpio.c file and
// illustrates how to set the GPIO to it's default state.
// InitGpio(); // Skipped for this example
InitTimerGpio();
InitSpiaGpio();
// Step 3. Clear all interrupts and initialize PIE vector table:
// Disable CPU interrupts
DINT;
// Initialize the PIE control registers to their default state.
// The default state is all PIE interrupts disabled and flags
// are cleared.
// This function is found in the DSP2802x_PieCtrl.c file.
InitPieCtrl();
// Disable CPU interrupts and clear all CPU interrupt flags:
IER = 0x0000;
IFR = 0x0000;
// Initialize the PIE vector table with pointers to the shell Interrupt
// Service Routines (ISR).
// This will populate the entire table, even if the interrupt
// is not used in this example. This is useful for debug purposes.
// The shell ISR routines are found in DSP2802x_DefaultIsr.c.
// This function is found in DSP2802x_PieVect.c.
InitPieVectTable();
spi_fifo_init();
// Interrupts that are used in this example are re-mapped to
// ISR functions found within this file.
EALLOW; // This is needed to write to EALLOW protected registers
PieVectTable.TINT0 = &cpu_timer0_isr;
EDIS; // This is needed to disable write to EALLOW protected registers
EALLOW; // This is needed to write to EALLOW protected registers
PieVectTable.SPIRXINTA = &spiRxFifoIsr;
PieVectTable.SPITXINTA = &spiTxFifoIsr;
EDIS; // This is needed to disable write to EALLOW protected registers
PieCtrlRegs.PIECTRL.bit.ENPIE = 1; // Enable the PIE block
PieCtrlRegs.PIEIER6.bit.INTx1=1; // Enable PIE Group 6, INT 1
PieCtrlRegs.PIEIER6.bit.INTx2=1; // Enable PIE Group 6, INT 2
IER |= 0x20; // Enable CPU INT6
// EINT; // Enable Global interrupt INTM
// ERTM; // Enable Global realtime interrupt DBGM
// Step 4. Initialize the Device Peripheral. This function can be
// found in DSP2802x_CpuTimers.c
InitCpuTimers(); // For this example, only initialize the Cpu Timers
#if (CPU_FRQ_60MHZ)
// Configure CPU-Timer 0, 1, and 2 to interrupt every second:
// 60MHz CPU Freq, 1 second Period (in uSeconds)
ConfigCpuTimer(&CpuTimer0, 60, 1000000);
#endif
// To ensure precise timing, use write-only instructions to write to the entire register. Therefore, if any
// of the configuration bits are changed in ConfigCpuTimer and InitCpuTimers (in DSP2802x_CpuTimers.h), the
// below settings must also be updated.
CpuTimer0Regs.TCR.all = 0x4001; // Use write-only instruction to set TSS bit = 0
// Step 5. User specific code, enable interrupts:
// Enable CPU int1 which is connected to CPU-Timer 0, CPU int13
// which is connected to CPU-Timer 1, and CPU int 14, which is connected
// to CPU-Timer 2:
IER |= M_INT1;
// Enable TINT0 in the PIE: Group 1 interrupt 7
PieCtrlRegs.PIEIER1.bit.INTx7 = 1;
EINT; // Enable Global interrupt INTM
ERTM; // Enable Global realtime interrupt DBGM
// Step 6. IDLE loop. Just sit and loop forever (optional):
for(;;)
{
if(CpuTimer0.InterruptCount>m)
{
Voltage=CpuTimer0.InterruptCount;
sdata[1] = (Led_lib[Voltage%100/10])*256 + Led_lib[Voltage%10];
sdata[0] = (Led_lib[(Voltage/1000)])*256 + Led_lib[Voltage%1000/100];
delay_loop();
if(CpuTimer0.InterruptCount==0xFFFF)
{
CpuTimer0.InterruptCount=0;
}
m=CpuTimer0.InterruptCount;
}
}
}
void delay_loop()
{
long i;
for (i = 0; i < 10000; i++) {}
}
interrupt void cpu_timer0_isr(void)
{
CpuTimer0.InterruptCount++;
GpioDataRegs.GPATOGGLE.bit.GPIO0 = 1;
GpioDataRegs.GPBTOGGLE.bit.GPIO34 = 1;
// Acknowledge this interrupt to receive more interrupts from group 1
PieCtrlRegs.PIEACK.all = PIEACK_GROUP1;
}
void InitTimerGpio(void)
{
EALLOW;
GpioCtrlRegs.GPBMUX1.bit.GPIO34 = 0;
GpioCtrlRegs.GPBDIR.bit.GPIO34 = 1;
GpioCtrlRegs.GPAMUX1.bit.GPIO0 = 0;
GpioCtrlRegs.GPADIR.bit.GPIO0 = 1;
GpioCtrlRegs.GPAMUX1.bit.GPIO1 = 0;
GpioCtrlRegs.GPADIR.bit.GPIO1 = 1;
GpioCtrlRegs.GPAMUX1.bit.GPIO2 = 0;
GpioCtrlRegs.GPADIR.bit.GPIO2 = 1;
EDIS;
}
void spi_fifo_init()
{
// Initialize SPI FIFO registers
SpiaRegs.SPICCR.bit.SPISWRESET=0; // Reset SPI
SpiaRegs.SPICCR.all=0x000F; //16-bit character, Loopback mode
SpiaRegs.SPICTL.all=0x0017; //Interrupt enabled, Master/Slave XMIT enabled
SpiaRegs.SPISTS.all=0x0000;
SpiaRegs.SPIBRR=0x0063; // Baud rate
SpiaRegs.SPIFFTX.all=0xC022; // Enable FIFO's, set TX FIFO level to 2
SpiaRegs.SPIFFRX.all=0x0022; // Set RX FIFO level to 2
SpiaRegs.SPIFFCT.all=0x00;
SpiaRegs.SPIPRI.all=0x0010;
SpiaRegs.SPICCR.bit.SPISWRESET=1; // Enable SPI
SpiaRegs.SPIFFTX.bit.TXFIFO=1;
SpiaRegs.SPIFFRX.bit.RXFIFORESET=1;
}
interrupt void spiTxFifoIsr(void)
{
Uint16 i;
GpioDataRegs.GPADAT.bit.GPIO19 = 1;
for(i=0;i<2;i++)
{
SpiaRegs.SPITXBUF=sdata; // Send data
}
GpioDataRegs.GPADAT.bit.GPIO19 = 0;
// sdata_point++;
SpiaRegs.SPIFFTX.bit.TXFFINTCLR=1; // Clear Interrupt flag
PieCtrlRegs.PIEACK.all|=0x20; // Issue PIE ACK
}
interrupt void spiRxFifoIsr(void)
{
Uint16 i;
for(i=0;i<2;i++)
{
rdata=SpiaRegs.SPIRXBUF; // Read data
}
// rdata_point++;
SpiaRegs.SPIFFRX.bit.RXFFOVFCLR=1; // Clear Overflow flag
SpiaRegs.SPIFFRX.bit.RXFFINTCLR=1; // Clear Interrupt flag
PieCtrlRegs.PIEACK.all|=0x20; // Issue PIE ack
} |
|