问:那么我应该如何处理容性负载?
答:首先我们应该确定运放是否能稳定地驱动自身负载。许多运放数据手册都给出“
容性负载驱动能力”这项指标。还有一些运放提供“小信号过冲与容性负载关系曲线”,从
中你可以看到过冲与附加负载电容呈指数关系增加,当达到100%时,运放不稳定。如果有
可能,应该使运放过冲远离100%。还应注意这条曲线对应指定增益。对于VFA,容性负载驱
动能力随增益成比例增加。所以,如果在增益为1时,VFA可稳定驱动100pF容性负载,那么
在增益为10时,便能驱动1000pF容性负载。也有少数运放的产品说明中给出开环输出电阻R
O,从而可以计算出上述附加极点的频率fP= 1/2πROCL 。如果附加极点fP大于上述电路带宽10倍,则电路稳定。如果运放的产品说明没有提供容性负载驱动能力或开环输出电阻的指标,也没有给出过冲与容性负载关系曲线,那么要保证电路稳定,你必须对容性负载采取必要的补偿措施。要使标准运放驱动容负载工作稳定有许多处理方法,下面介绍几种。 (1)提高噪声增益法
使低频电路稳定的有效方法,也是设计者常常忽略的方法,就是增加电路的闭环增益(即噪
声增益),而不改变信号增益,这样可在开环增益与反馈衰减到0dB带宽之积恒定条件下降低
噪声带宽。具体电路如图2所示。在图2(a)中,在运放的两个输入端之间接电阻RD。此时
电路的增益可由给定公式计算。因为是噪声增益而不是信号增益支配稳定性,所以
图2 提高效大器噪声增益电路
电路稳定性的提高不影响信号增益。为保证电路稳定,最简单的方法是使噪声带宽至少应比
容性负载极点频率低10倍频程。
图3 环路增益波特图
这种方法的缺点是输入端电压噪声和输入失调电压被放大产生附加的输出电压噪声和输出失
调电压增加。用一个电容CD与电阻RD串联可以消除附加的直流失调电压,但增加的电压噪声是器件固有的,不能消除。当选用CD时,其电容值应尽可能大。为保证噪声极点至少低于“噪声带宽”10倍,CD最小应取10A NOISE /2πRDGBP。 (2)环路外补偿法
这种方法是在运放的输出端和负载电容之间串入一个电阻RX,如图4所示。虽然RX加在反馈环路的外部,但它可将负载电容产生的附加零点频率fZ作用到反馈网络的传递函数,从而可以减小高频环路相移。为了保证电路稳定,RX的取值应该使附加零点频率至少比运放电路闭环带宽低10倍。电路加入RX使电路性能不会像方法1那样增加输出噪声,但是从负载端看进去的输出阻抗要增加。由于RX和RL构成分压器,从而会使信号增益降低。如果RL已知并且适当地恒定,那么增益降低值可通提高运放电路的增益来补偿。这种方法用于驱动传输线路非常有用。RL和RX值必须等于电缆的特征阻抗(通常为50Ω和75Ω),以免产生驻波。因此,先确定RX值,其余其它电阻值要使放大器的增益加倍,用来补偿由电阻分压作用降低的信号增益,从而解决问题。 (3)环路内补偿法
如果RL值未知,或者是动态值,那么增益级的有
图4 环路外补偿法
效输出电阻必须很低。在这种情况下,在整个反馈环路内接一个电阻RX是很有用的,如图5所示。在这个电路中,由于直流和低频反馈都是来自负载电阻RL,所以从输入端到负载的信号增益不受分压器RX和RL的影响。 图5 环路内补偿法
RX=RORGRF
CF=RO+RXRF·CL
在这个电路中外接的电容CF是用来抵消CL产生的附加极点和零点。为了简便起见,CF产生的零点频率应该与CL产生的极点频率相一致,CF产生的极点频率应该与CL产生的零点频率相一致。因此整个传递函数和相频响应好像似没有电容作用一样。为了确保极点和零点作用相互抵消,图5中的方程必须求解准确。还应注意方程成立的条件:RFRO,RGRO,RLRO。如果负载电阻很大,这些条件容易满足。
当RO未知时,计算则很困难。在这种情况下,设计过程变成猜谜游戏。应该注意“SPICE”这个词:运算放大器的SPICE模型是一种不能精确地表示运放开环输出电阻RO的模型,所以这种模型不能完全取代传统的补偿网络设计方法。还应当强调指出的是,为了采用这种方法,CL必须已知(且为常数)。在许多应用中,放大器驱动一个电路外部的负载,当负载改换时,CL也应该适当变化。只有当CL接入闭环系统时,使用上述电路才最适合。这种在基准电压的缓冲器或倒相器中,驱动一个大的去耦电容。这里CL是固定值,可以精确地抵消极点和零点的作用。与前两种方法相比,这种方法非常适合用于低直流输出电阻和低噪声的情况。而且像对基准电压源进行去耦的那么大的容性负载(一般几微法),用其它方法补偿都是不切实际的。 上述三种补偿方法都各有其优点和缺点。为了对你的应用做出最好的选择,应该对它们有足
够的认识。这三种方法都适合用于“标准”用法,即单位增益稳定,电压反馈运算放大器(V
FA)。对于特殊应用的放大器,读者应该采用其它方法。
|