2.1 xQueueGenericSend()
这个函数用于入队操作,绝不可以用在中断服务程序中。根据参数的不同,可以从队列尾入队、从队列首入队和覆盖式入队。覆盖式入队用于只有一个队列项的场合,入队时如果队列已满,则将之前的队列项覆盖掉。函数原型为:
BaseType_t xQueueGenericSend
(
QueueHandle_t xQueue,
const void * const pvItemToQueue,
TickType_t xTicksToWait,
const BaseType_t xCopyPosition
)
- xQueue:队列句柄
- pvItemToQueue:指针,指向要入队的项目
- xTicksToWait:如果队列满,等待队列空闲的最大时间,如果队列满并且xTicksToWait被设置成0,函数立刻返回。时间单位为系统节拍时钟周期,宏portTICK_PERIOD_MS可以用来辅助计算真实延时值。如果INCLUDE_vTaskSuspend设置成1,并且指定延时为portMAX_DELAY将引起任务无限阻塞(没有超时)。
- xCopyPosition:入队位置,可以选择从队列尾入队、从队列首入队和覆盖式入队。
这个函数为了获得最高效率而放宽了编码标准:有多个返回点。因此如果纯粹以文字方式来讲解,我觉得很难达到好的效果,所以我首先给出整理后的源码(去除调试和队列集合有关代码),然后画出流程图,对函数的关键点做重点描述。
整理后的源码:
BaseType_t xQueueGenericSend(
QueueHandle_t xQueue,
const void * const pvItemToQueue,
TickType_t xTicksToWait,
const BaseType_t xCopyPosition )
{
BaseType_t xEntryTimeSet = pdFALSE, xYieldRequired;
TimeOut_t xTimeOut;
Queue_t * const pxQueue = ( Queue_t * ) xQueue;
for( ;; )
{
taskENTER_CRITICAL();
{
/* 队列还有空闲?正在运行的任务一定要比等待访问队列的任务优先级高.如果使用覆盖式入队,则不需要关注队列是否满*/
if( ( pxQueue->uxMessagesWaiting < pxQueue->uxLength ) || ( xCopyPosition == queueOVERWRITE ) )
{
/*完成数据拷贝工作,分为从队列尾入队,从队列首入队和覆盖式入队*/
xYieldRequired = prvCopyDataToQueue( pxQueue, pvItemToQueue, xCopyPosition );
/* 如果有任务在此等待队列数据到来,则将该任务解除阻塞*/
if( listLIST_IS_EMPTY( &( pxQueue->xTasksWaitingToReceive ) ) == pdFALSE )
{
/*有任务因等待出队而阻塞,则将任务从队列等待接收列表中删除,然后加入到就绪列表*/
if( xTaskRemoveFromEventList( &( pxQueue->xTasksWaitingToReceive ) ) != pdFALSE )
{
/* 解除阻塞的任务有更高的优先级,则当前任务要让出CPU,因此触发一个上下文切换.又因为现在还在临界区,要等退出临界区后,才会执行上下文切换.*/
queueYIELD_IF_USING_PREEMPTION();
}
}
else if( xYieldRequired != pdFALSE )
{
/* 这个分支处理特殊情况*/
queueYIELD_IF_USING_PREEMPTION();
}
taskEXIT_CRITICAL();
return pdPASS;
}
else
{
if( xTicksToWait == ( TickType_t ) 0 )
{
/* 如果队列满并且没有设置超时,则直接退出 */
taskEXIT_CRITICAL();
/* 返回队列满错误码 */
return errQUEUE_FULL;
}
else if( xEntryTimeSet == pdFALSE )
{
/* 队列满并且规定了阻塞时间,因此需要配置超时结构体对象 */
vTaskSetTimeOutState( &xTimeOut );
xEntryTimeSet = pdTRUE;
}
}
}
taskEXIT_CRITICAL();
/* 退出临界区,至此,中断和其它任务可以向这个队列执行入队(投递)或出队(读取)操作.因为队列满,任务无法入队,下面的代码将当前任务将阻塞在这个队列上,在这段代码执行过程中我们需要挂起调度器,防止其它任务操作队列事件列表;挂起调度器虽然可以禁止其它任务操作这个队列,但并不能阻止中断服务程序操作这个队列,因此还需要将队列上锁,防止中断程序读取队列后,使阻塞在出队操作其它任务解除阻塞,执行上下文切换(因为调度器挂起后,不允许执行上下文切换) */
vTaskSuspendAll();
prvLockQueue( pxQueue );
/* 查看任务的超时时间是否到期 */
if( xTaskCheckForTimeOut( &xTimeOut, &xTicksToWait ) == pdFALSE )
{
if( prvIsQueueFull( pxQueue ) != pdFALSE )
{
/*超时时间未到期,并且队列仍然满*/
vTaskPlaceOnEventList( &( pxQueue->xTasksWaitingToSend ), xTicksToWait );
/* 解除队列锁,如果有任务要解除阻塞,则将任务移到挂起就绪列表中(因为当前调度器挂起,所以不能移到就绪列表)*/
prvUnlockQueue( pxQueue );
/* 恢复调度器,将任务从挂起就绪列表移到就绪列表中*/
if( xTaskResumeAll() == pdFALSE )
{
portYIELD_WITHIN_API();
}
}
else
{
/* 队列有空闲,重试 */
prvUnlockQueue( pxQueue );
( void ) xTaskResumeAll();
}
}
else
{
/* 超时时间到期,返回队列满错误码*/
prvUnlockQueue( pxQueue );
( void ) xTaskResumeAll();
traceQUEUE_SEND_FAILED( pxQueue );
return errQUEUE_FULL;
}
}
}
程序流程如图2-1所示,我们对图中红色字体标注的部分做详解。
图2-1:通用入队操作流程图
当任务将数据入队时,如果队列未满或者以覆盖式入队,情况是最简单的,调用函数prvCopyDataToQueue()将要入队的数据拷贝到队列。这个函数处理三种入队情况,第一种是队列项大小为0时(即队列结构体成员uxItemSize为0,比如二进制信号量和计数信号量),不进行数据拷贝工作,而是将队列项计数器加1(即队列结构体成员uxMessagesWaiting++);第二种情况是从队列尾入队时,则将数据拷贝到指针pxQueue->pcWriteTo指向的地方、更新指针指向的位置、队列项计数器加1;第三种情况是从队列首入队时,则将数据拷贝到指针pxQueue->u.pcReadFrom指向的地方、更新指针指向的位置、队列项计数器加1。如果是覆盖式入队,还会调整队列项计数器的值。
完成数据入队操作后,还要检查是否有任务因为等待出队而阻塞,因为这次数据入队,队列至少有一个队列项,如果有阻塞任务,则阻塞的最高优先级任务可以解除阻塞了。
因等待出队而阻塞的任务会将任务的事件列表项(即任务TCB结构体成员xEventListItem,我们在《FreeRTOS高级篇2---FreeRTOS任务创建分析》一文中讲到过事件列表项,它是任务TCB的一个结构体成员)挂接到队列的等待出队列表上(即队列结构体成员xTasksWaitingToReceive)。现在,因为要解除任务阻塞,我们需要将任务的事件列表项从队列的等待出队队列上删除,并且将任务移动到就绪列表中。这一切,都是调用函数xTaskRemoveFromEventList()实现的。
之后,如果解除阻塞的任务优先级比当前任务优先级更高,则触发一个PendSV中断,等退出临界区后,进行上下文切换。入队任务完成。
上面讨论了最理想的情况,过程也简洁明了,但如果任务入队时,队列满并且不允许覆盖入队,则情况会变得复杂起来。
在这种情况下,先看一个简单分支:阻塞时间为0的情况。设置阻塞时间为0意味着当队列满时,函数立即返回,返回一个错误代码,表示队列满。
如果阻塞时间不为0,则本任务会因为等待入队而进入阻塞。在将任务设置为阻塞的过程中,是不希望有其它任务和中断操作这个队列的事件列表的(队列结构体成员xTasksWaitingToReceive列表和xTasksWaitingToSend列表),因为操作队列事件列表可能引起其它任务解除阻塞,这可能会发生优先级翻转。比如任务A的优先级低于本任务,但是在本任务进入阻塞的过程中,任务A却因为其它原因解除阻塞了,这显然是要绝对禁止的。因此FreeRTOS使用挂起调度器来简单粗暴的禁止其它任务操作队列,因为挂起调度器意味着任务不能切换并且不准调用可能引起任务切换的API函数。
但挂起调度器并不会禁止中断,中断服务函数仍然可以操作队列事件列表,可能会解除任务阻塞、可能会进行上下文切换,这是不允许的。于是,解决办法是不但挂起调度器,还要给队列上锁!
队列结构体中有两个成员跟队列上锁有关:xRxLock和xTxLock。这两个成员变量为queueUNLOCKED(宏,定义为-1)时,表示队列未上锁;当这两个成员变量为queueLOCKED_UNMODIFIED(宏,定义为0)时,表示队列上锁。
给队列上锁是调用宏prvLockQueue()实现的,代码很简单,将队列结构体成员xRxLock和xTxLock都设置为queueLOCKED_UNMODIFIED。
我们看一下给队列上锁是如何起作用的。当中断服务程序操作队列并且导致阻塞的任务解除阻塞时,会首先判断该队列是否上锁,如果没有上锁,则解除被阻塞的任务,还会根据需要设置上下文切换请求标志;如果队列已经上锁,则不会解除被阻塞的任务,取而代之的是,将xRxLock或xTxLock加1,表示队列上锁期间出队或入队的数目,也表示有任务可以解除阻塞了。这部分代码在带中断保护的入队和出队API函数中,后面我们会讲到,这里先有个印象。
有将队列上锁操作,就会有解除队列锁操作。函数prvUnlockQueue()用于解除队列锁,将可以解除阻塞的任务插入到就绪列表,解除任务的最大数量由xRxLock和xTxLock指定。
经过一系列的逻辑判断,发现本任务还是要进入阻塞状态,则调用函数vTaskPlaceOnEventList()来实现。这个函数将揭示任务因等待特定事件而进入阻塞的详细步骤,其实非常简单,只有两步:第一步,将任务的事件列表项(任务TCB结构体成员xEventListItem)插入到队列的等待入队列表(队列结构体成员xTasksWaitingToSend)中;第二步,将任务的状态列表项(任务TCB结构体成员xStateListItem)从就绪列表中删除,然后插入到延时列表中,任务的最大延时时间放入xStateListItem. xItemValue中,每次系统节拍定时器中断服务函数中,都会检查这个值,检测任务是否超时。
当任务成功阻塞在等待入队操作后,当前任务就没有必要再占用CPU了,所以接下来解除队列锁、恢复调度器、进行任务切换,下一个处于最高优先级的就绪任务就会被运行了。
|