4.1 内存申请:pvPortMalloc()和第二种内存管理策略一样,它也使用一个链表结构来跟踪记录空闲内存块。结构体定义为:
typedef struct A_BLOCK_LINK
{
struct A_BLOCK_LINK *pxNextFreeBlock; /*指向列表中下一个空闲块*/
size_t xBlockSize; /*当前空闲块的大小,包括链表结构大小*/
} BlockLink_t;
与第二种内存管理策略一样,空闲内存块也是以单链表的形式组织起来的,BlockLink_t类型的局部静态变量xStart表示链表头,但第四种内存管理策略的链表尾保存在内存堆空间最后位置,并使用BlockLink_t指针类型局部静态变量pxEnd指向这个区域(第二种内存管理策略使用静态变量xEnd表示链表尾),如图4-1所示。
第四种内存管理策略和第二种内存管理策略还有一个很大的不同是:第四种内存管理策略的空闲块链表不是以内存块大小为存储顺序,而是以内存块起始地址大小为存储顺序,地址小的在前,地址大的在后。这也是为了适应合并算法而作的改变。
图4-1:内存堆初始化示意图
从图4-1中可以看出,整个有效空间组成唯一一个空闲块,在空闲块的起始位置放置了一个链表结构,用于存储这个空闲块的大小和下一个空闲块的地址。由于目前只有一个空闲块,所以空闲块的pxNextFreeBlock指向指针pxEnd指向的位置,而链表xStart结构的pxNextFreeBlock指向空闲块。xStart表示链表头,pxEnd指向位置表示链表尾。
当申请x字节内存时,实际上不仅需要分配x字节内存,还要分配一个BlockLink_t类型结构体空间,用于描述这个内存块,结构体空间位于空闲内存块的最开始处。当然,和第一种、第二种内存管理策略一样,申请的内存大小和BlockLink_t类型结构体大小都要向上扩大到对齐字节数的整数倍。
我们先说一下内存申请过程:首先计算实际要分配的内存大小,判断申请内存合法性,如果合法则从链表头xStart开始查找,如果某个空闲块的xBlockSize字段大小能容得下要申请的内存,则将这块内存取出合适的部分返回给申请者,剩下的内存块组成一个新的空闲块,按照空闲块起始地址大小顺序插入到空闲块链表中,地址小的在前,地址大的在后。在插入到空闲块链表的过程中,还会执行合并算法:判断这个块是不是可以和上一个空闲块合并成一个大块,如果可以则合并;然后再判断能不能和下一个空闲块合并成一个大块,如果可以则合并!合并算法是第四种内存管理策略和第二种内存管理策略最大的不同!经过几次内存申请和释放后,可能的内存堆如图4-2所示:
图4-2:经过数次内存申请和释放后,某个内存堆示意图
有了上面的基础,我们再来看一下源码,我把需要注意的要点以注释的方式放在源码中,不再单独对这个函数做讲解。函数中会用到几个局部静态变量在这里简单说明一下:
- xFreeBytesRemaining:表示当前未分配的内存堆大小
- xMinimumEverFreeBytesRemaining:表示未分配内存堆空间历史最小值。这个值跟xFreeBytesRemaining有很大区别,只有记录未分配内存堆的最小值,才能知道最坏情况下内存堆的使用情况。
- xBlockAllocatedBit:这个变量在第一次调用内存申请函数时被初始化,将它能表示的数值的最高位置1。比如对于32位系统,这个变量被初始化为0x80000000(最高位为1)。内存管理策略使用这个变量来标识一个内存块是否空闲。如果内存块被分配出去,则内存块链表结构成员xBlockSize按位或上这个变量(即xBlockSize最高位置1),在释放一个内存块时,会把xBlockSize的最高位清零。
void *pvPortMalloc( size_t xWantedSize )
{
BlockLink_t *pxBlock, *pxPreviousBlock, *pxNewBlockLink;
void *pvReturn = NULL;
vTaskSuspendAll();
{
/* 如果是第一次调用内存分配函数,则初始化内存堆,初始化后的内存堆如图4-1所示 */
if( pxEnd == NULL )
{
prvHeapInit();
}
/* 申请的内存大小合法性检查:是否过大.结构体BlockLink_t中有一个成员xBlockSize表示块的大小,这个成员的最高位被用来标识这个块是否空闲.因此要申请的块大小不能使用这个位.*/
if( ( xWantedSize & xBlockAllocatedBit ) == 0 )
{
/* 计算实际要分配的内存大小,包含链接结构体BlockLink_t在内,并且要向上字节对齐 */
if( xWantedSize > 0 )
{
xWantedSize += xHeapStructSize;
/* 对齐操作,向上扩大到对齐字节数的整数倍 */
if( ( xWantedSize & portBYTE_ALIGNMENT_MASK ) != 0x00 )
{
xWantedSize += ( portBYTE_ALIGNMENT - ( xWantedSize & portBYTE_ALIGNMENT_MASK ) );
configASSERT( ( xWantedSize & portBYTE_ALIGNMENT_MASK ) == 0 );
}
}
if( ( xWantedSize > 0 ) && ( xWantedSize <= xFreeBytesRemaining ) )
{
/* 从链表xStart开始查找,从空闲块链表(按照空闲块地址顺序排列)中找出一个足够大的空闲块 */
pxPreviousBlock = &xStart;
pxBlock = xStart.pxNextFreeBlock;
while( ( pxBlock->xBlockSize < xWantedSize ) && ( pxBlock->pxNextFreeBlock != NULL ) )
{
pxPreviousBlock = pxBlock;
pxBlock = pxBlock->pxNextFreeBlock;
}
/* 如果最后到达结束标识,则说明没有合适的内存块,否则,进行内存分配操作*/
if( pxBlock != pxEnd )
{
/* 返回分配的内存指针,要跳过内存开始处的BlockLink_t结构体 */
pvReturn = ( void * ) ( ( ( uint8_t * ) pxPreviousBlock->pxNextFreeBlock ) + xHeapStructSize );
/* 将已经分配出去的内存块从空闲块链表中删除 */
pxPreviousBlock->pxNextFreeBlock = pxBlock->pxNextFreeBlock;
/* 如果剩下的内存足够大,则组成一个新的空闲块 */
if( ( pxBlock->xBlockSize - xWantedSize ) > heapMINIMUM_BLOCK_SIZE )
{
/* 在剩余内存块的起始位置放置一个链表结构并初始化链表成员 */
pxNewBlockLink = ( void * ) ( ( ( uint8_t * ) pxBlock ) + xWantedSize );
configASSERT( ( ( ( size_t ) pxNewBlockLink ) & portBYTE_ALIGNMENT_MASK ) == 0 );
pxNewBlockLink->xBlockSize = pxBlock->xBlockSize - xWantedSize;
pxBlock->xBlockSize = xWantedSize;
/* 将剩余的空闲块插入到空闲块列表中,按照空闲块的地址大小顺序,地址小的在前,地址大的在后 */
prvInsertBlockIntoFreeList( pxNewBlockLink );
}
/* 计算未分配的内存堆空间,注意这里并不能包含内存碎片信息 */
xFreeBytesRemaining -= pxBlock->xBlockSize;
/* 保存未分配内存堆空间历史最小值 */
if( xFreeBytesRemaining < xMinimumEverFreeBytesRemaining )
{
xMinimumEverFreeBytesRemaining = xFreeBytesRemaining;
}
/* 将已经分配的内存块标识为"已分配" */
pxBlock->xBlockSize |= xBlockAllocatedBit;
pxBlock->pxNextFreeBlock = NULL;
}
}
}
traceMALLOC( pvReturn, xWantedSize );
}
( void ) xTaskResumeAll();
#if( configUSE_MALLOC_FAILED_HOOK == 1 )
{ /* 如果内存分配失败,调用钩子函数 */
if( pvReturn == NULL )
{
extern void vApplicationMallocFailedHook( void );
vApplicationMallocFailedHook();
}
else
{
mtCOVERAGE_TEST_MARKER();
}
}
#endif
configASSERT( ( ( ( size_t ) pvReturn ) & ( size_t ) portBYTE_ALIGNMENT_MASK ) == 0 );
return pvReturn;
}
|