硬流控的RTS、CTS: (现在做串口使用RTS/CTS必看内容,因为MTK/) RTS (Require ToSend,发送请求)为输出信号,用于指示本设备准备好可接收数据,低电平有效,低电平说明本设备可以接收数据。 CTS (Clear ToSend,发送允许)为输入信号,用于判断是否可以向对方发送数据,低电平有效,低电平说明本设备可以向对方发送数据。 此处有人将CTS翻译为发送允许,我感觉的确比翻译为清除发送好。因为CTS是对方的RTS控制己方的CTS是否允许发送的功能。 用AP与MODEM采用流控收发串口数据举例: CTS 为输入 RTS 为输出 AP的CTS对接MODEM的RTS;MODEM的CTS对接AP的RTS。
默认启动时: AP的CTS为高 AP的RTS为低 MODEM的CTS 高 但极容易被拉低 MODEM的RTS 低 默认休眠时 MODEM的CTS 高 但极容易被拉低 MODEM的RTS 高
其中CTS用电压表测量电压时发现:在测量最初的大概200ms时,为高电平,然后电压值不断下降,变成低电平,这说明CTS悬空时应该为高,这中高电平仅仅是一定量的正电荷而已。 不知道芯片设计时,规格说明书为什么要写CTS默认为高,CTS仅仅是输入端,不需要什么默认值啊。并且在流控打开情况下,不接CTS与RTS,也是可以正常3根线(RXD/TXD/GND)通信的,这说明不接RTS/CTS时,CTS为低电平才对。为何实际使用与芯片规格说明书不一致,可能是被外壳金属盖干扰到低电平了,毕竟自己用的模块,CTS是如此靠近低电平的金属保护盖,并且CTS为输入口,没有上拉下拉电平能力。
AP与MODEM的流控这样通信的: AP串口可用时,将AP-RTS拉低,MODEM-CTS检测到AP-RTS为低,知道AP串口已准备好,可以发送数据; AP串口不可用时,将AP-RTS拉高,MODEM-CTS检测到AP-RTS为高,知道AP串口还未准备好,就不会放数据。 MODEM串口可用与不可用时的交互是同样道理。
没有串口控制器,用中断和普通IO口即可实现RTS与CTS功能。 RTS用GPIO实现,串口就绪拉低电平,串口忙拉高电平 CTS用中断实现,检测到低电平,将串口数据发送出去,检测到高电平则保留串口数据直到检测到低电平为止。
下面是摘录网上有用的参考资料: 假定A、B两设备通信,A设备的RTS 连接B设备的CTS ;A设备的CTS 连接B设备的RTS 。前一路信号控制B设备的发送,后一路信号控制A设备的发送。对B设备的发送(A设备接收)来说,如果A设备接收缓冲快满的时发出RTS 信号(意思通知B设备停止发送),B设备通过CTS 检测到该信号,停止发送;一段时间后A设备接收缓冲有了空余,发出RTS 信号,指示B设备开始发送数据。A设备发(B设备接收)类似。上述功能也能在数据流中插入Xoff(特殊字符)和Xon(另一个特殊字符)信号来实现。A设备一旦接收到B设备发送过来的Xoff,立刻停止发 送;反之,如接收到B设备发送过来的Xon,则恢复发送数据给B设备。同理,B设备也类似,从而实现收发双方的速度匹配。 半双工的方向切换:RS232中使用DTR(Date Terminal Ready,数据终端准备)与DSR(Data Set Ready ,数据设备准备好)进行主流控,类似上述的RTS 与CTS 。对半双工的通信的DTE(Date Terminal Equipment,数据终端设备)与DCE(Data circuitEquipment )来说,默认的方向是DTE接收,DCE发送。如果DTE要发送数据,必须发出RTS 信号,请求发送数据。DCE收到后如果空闲则发出CTS 回应RTS 信号,表示响应请求,这样通信方向就变为DTE->TCE,同时RTS 与CTS 信号必须一直保持。从这里可以看出,CTS ,TRS虽然也有点流控的意思(如CTS 没有发出,DTE也不能发送数据),但主要是用来进行方向切换的。
|