本帖最后由 nethopper 于 2019-3-30 01:44 编辑
二、线性失真引起的波形改变
当非线性失真之总谐波失真(THD)比较严重的时候,从单频正弦波的波形变形就可以观察到,而线性失真是不会影响单频正弦波的波形的。即使线性失真比较严重,从单频正弦波的波形上也是看不出来的。要想从波形上观察出线性失真,必须采用含有多个频率成份的信号,最常用的就是方波。下面以方波为例来介绍由线性失真引起的波形改变。方波由基波及幅度为基波的1/N(N=3、5、7、…、∞)的无穷多阶奇次谐波组成。下图是一个方波信号的波形图及频谱。如果将此信号通过一个既无线性失真又无非线性失真的理想系统,则该方波的形状会维持原状,不会发生改变。
图2 方波波形及频谱
下图则是将上图中的方波输入到一个具有非平坦的幅频响应(高频被削弱)、线性相频响应、无非线性失真的系统后得到的输出波形及频谱。
图3 非平坦的幅频响应(高频被削弱)引起的方波失真
下图则是将方波输入到一个具有非平坦的幅频响应(低频被削弱)、线性相频响应、无非线性失真的系统后得到的输出波形及频谱。
图4 非平坦幅频响应(低频被削弱)引起的方波失真
下图则是将方波输入到一个具有平坦的幅频响应、非线性相频响应、无非线性失真的系统后得到的输出波形及频谱。对比下图与图2,二者幅度谱完全一样,因为幅度谱不能反映相位信息
图5 非线性相频响应引起的方波失真
一个理想的方波信号有无穷大的带宽,但经过ADC或DAC转换后,由于奈奎斯特采样定理的要求,通常都会带限在1/2采样频率范围内,这就出现了所谓的带限方波。理想情况下,在带宽范围内,幅频响应是平坦的;在带宽范围外,则所有频率成份的幅度为零。下图就是一个理想带限方波的波形及频谱,方波频率为1kHz,采样频率为48kHz,带限于24kHz(即:含基波和第3、5、…、23次谐波),系统具有线性相频响应,且无非线性失真。
图6 带限幅频响应(仅含基波和不高于第23次的谐波)引起的方波失真
下图就是另一个理想带限方波的波形及频谱,方波频率为200Hz,采样频率为48kHz,带限于24kHz(即:含基波和第3、5、…、119次谐波),系统具有线性相频响应,且无非线性失真。
图7 带限幅频响应(仅含基波和不高于第119次的谐波)引起的方波失真
对比图6和图7可见,采样频率与方波(基波)频率之比越大,0~1/2采样频率带宽内可容纳的方波谐波阶数越高,得到的方波就越接近理想的波形,但是由于Gibbs现象的存在,在方波的上升沿和下降沿总会出现过冲现象,理想的带限方波的过冲幅度为跳变幅度的大约9%。
方波的外形简单,生成也容易,其中的各频率成份的幅度和相位有严格关系,而系统的线性及非线性失真都会的扰动这些关系,造成方波波形的改变。因此通过观察方波波形的失真情况可非常初略地估算系统的频率响应以及判断是否出现了不稳定的振荡等情况。但是,方波响应测试是一种笼统的测试方法,它无法精确地测量系统的任何一项失真指标,甚至也很难准确区分系统振荡和带限两种情况。下面将介绍幅频响应的专业测试方法。
|