运放选择需要注意的问题

[复制链接]
7224|10
 楼主| afung 发表于 2008-10-19 22:35 | 显示全部楼层 |阅读模式
那位大侠能谈一谈运放选择需要注意的问题啊,给新手总结一下,谢谢!
iC921 发表于 2008-10-19 23:19 | 显示全部楼层

有点难啊

其中有一个是要看 价钱 吧<br /><br />楼下继续……
孤星119 发表于 2008-10-20 09:25 | 显示全部楼层

........

输入阻抗,输出阻抗,供电电压,输出功率,频带等.
tyw 发表于 2008-10-20 09:40 | 显示全部楼层

参考一下

<font color=#008040>要是下面一大陀东东令泥生畏滴话,泥就记住这句即可:看菜吃饭,先用324.哈哈.<br />当泥用得起7650,op07之类的精品时,这陀东东已不够泥瞧滴拉.<font color=#008040></font></font><br /><br /><br /><br />集成运算放大器的选择策略与应用技术<br />**类型:模拟技术&nbsp;&nbsp;&nbsp;发布者:小刘&nbsp;&nbsp;&nbsp;新闻来源:因特网&nbsp;&nbsp;&nbsp;发布时间:2008-2-15<br />字体大小:[大][中][小]<br />&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;运放的选择策略&nbsp;<br /><br />&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;(1)设计目标的综合考虑&nbsp;<br /><br />&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;设计者必须综合考虑设计目标的信号电平,闭环增益,要求精度,所需带宽,电路阻抗,环境条件及其他因素,并把设计要求的性能转换成运放的参数,建立各个参数的取值以及它们随温度、时间、电流电压等变化的范围。&nbsp;<br /><br />&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;(2)深刻理解电路手册中特性指标的意义<br /><br />&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;不同的制造商可能给出不同的特性指标,这些指标可能是通过不同的测量技术获得的,这就给运放的选择带来了困难。为避免这些困难,设计者必须深刻理解电路手册中特性指标的意义,同时必须了解这些参数是如何测得的,然后把这些特性指标转换成对设计要求有意义的参数。&nbsp;<br /><br />&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;(3)选择具有最优性能价格比的运放&nbsp;<br /><br />&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;设计者必须把设计目标的性能、所选择器件的性能指标与价格联系起来,以最低的价格获得符合设计目标提出的物理、电气和环境要求。&nbsp;<br /><br />&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;运放的分类与几种典型应用&nbsp;<br /><br />&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;不同类型运放组成近百种运放系列,其中一部分是通用的,称为通用型运放:另一部分为特殊应用提供优化特性,称为专用型运放。通用型运放的各项性能指标都比一般的分立元件直接耦合放大电路有所改善,大致能够满足中等精度的要求,一般情况下无须调零即可使用。专用型运放为了适应特殊应用场合而具有优化特性。根据专用型运算放大器的性能指标,运算放大器可分为:低噪声运放、精密运放、高速运放、低偏置电流运放、低漂移运放、低功耗/微功耗运放等。现在说明几种不同类型的专用型运放及其应用技术。&nbsp;<br />  <br />&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;低噪声运放及其典型应用技术&nbsp;<br />  <br />&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;以AD797为例。它是低噪声、场效应管输入(FET)运算放大器,最大输入电压噪声最大值50nVpp。&nbsp;<br />  <br />&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;AD797组成的低噪声电荷放大器见图1。此时放大作用取决于运放输入端电荷的保持因素,即要求电容CS上的电荷能被传送到电容CF,形成输出电压ΔQ/CF。在放大器输出端呈现的电压噪声等于放大器输入电压噪声乘以电路的噪声增益(1+(CS/CF))。&nbsp;<br /><br />&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;图1 AD797组成低噪声电荷放大器&nbsp;<br />  <br />&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;该电路中存在3个重要的噪声源:运放的电压噪声、电流噪声和电阻Rb引起的电流噪声。该电路利用“T”形网络增大Rb的有效电阻值,改善了低频截止点,但不能改变低频时起支配作用的电阻Rb的噪;须选择足够大的Rb尽可能减小该电阻对整个电路噪声影响。为了达到最佳特性,电路输入端要对信号源内阻进行平衡(由电阻RB1调整);要对信号源电容进行平衡(由电容CB1调整)。当CB1值大于300pF时,电路噪声能有效减小。&nbsp;<br />  <br />&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;精密运放及其典型应用技术&nbsp;<br />  <br />&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;以AD517为例。它是一种单片高精密运算放大器,具有激光调整的低失调电压、低漂移等精密特性,具有内部补偿和短路保护,能防止自锁,具有超低偏置电流电路,偏置电流最大值1nA。管壳单独引出(8脚),使得管壳能单独接到和输入端等电位的点上,从而使管壳上杂散漏电减至最小;能屏蔽输入电路,使其不受外部噪声和电源瞬变的影响。&nbsp;<br />  <br />&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;AD517组成微电流电压转换器的应用技术如图2所示,该电路具有较高的灵敏度,缺点是失调电压漂移和噪声等输入误差会被增益放大,影响仪器性能,但AD517的精密特性可以弥补这个缺憾。由于AD517具有超低输入电流的性能,必须采用防护技术,实现方法是在包裹高阻抗信号线的绝缘材料外部加一个低阻抗自举电位,这个自举电位与高阻抗线的电位保持相等,使绝缘体两侧没有压降,也就没有漏电。防护体可作为屏蔽层减少噪声拾取,并具有减少输入线有效电容的附加功能。AD517的管壳单独引到管脚8,使管壳也能接到防护电位上,从而真正消除了封装绝缘材料上的电位漏电路径,为敏感电路提供噪声屏蔽。该电路给出了典型的反相防护连接图,如果管脚8不接防护端,则应将它接地或接电源以减少噪声。在许多仪表测量的场合,会遇到从高电压源测量微弱电流的问题,在该类应用中,很有必要对输入端采取一定的保护。AD517具有不同于其他器件的地方,故障形式是由于电流过大导致器件过热而不是电压击穿,只要在受影响的输入端串联一个电阻即可解决问题。实际应用中,所设计仪器仪表的电路板安装完毕后,通常要用高纯度酒精彻底清洗,然后用消除电离的水漂清,再用氮收干,这样可保持漏电最小,性能最佳。<br /><br />&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;图2 AD517组成微电流电压转换器&nbsp;<br /><br />&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;视频运放及其典型应用技术&nbsp;<br />  <br />&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;以AD829为例。它是采用互补双极型(CB)制造工艺的单片视频运算放大器,具有优异的直流特性,最大输入失调电压1mV,输入失调电压漂移0.3μV/℃,输入电压噪声为1.7nV/Hz,输入电流噪声为1.5pA/Hz,共模抑制比和电源电压抑制比均为120dB;具有常规补偿;具有优良的建立时间特性(至0.1%为90ns):反相端驱动50Ω或75Ω同轴线时,AD829在3.58MHz和4.43MHz的相位不均匀性为0.04°,增益不均匀性为0.02%。<br /><br />&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;图3 视频放大的典型应用&nbsp;<br />  <br />&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;视频放大的典型应用如图3所示,此为同相输入,可以通过改变接到管脚2的两个电阻RF和R1阻值的大小来调节整个电路的增益20lg1+RFR1,也可接成反相输入。管脚7接正电源,管脚4接负电源,应注意采用合适的电源退耦,最好采用多个电容并联的形式(如1μF、0.1μF、0.01μF并联组合),使用±5V电源时,能获得最低的差分增益和差分相位误差,取得优良的视频性能。当驱动多根电缆时,须在电缆的输出之间加入高频隔离。放大器输出端串入75Ω电阻保证运放输出与传输线的匹配,传输线末端并入75Ω电阻保证负载之间匹配,在增益G&nbsp;=&nbsp;6dB时,差分增益误差0.05%,相位增益误差0.01°,视频性能优良。注意,为减小信号源内阻与放大器输入电容(约3pF)对电路交流特性的影响,应使信号源内阻小于1kΩ;有时需要在反馈电阻RF两端并联一个小电容(3pF)加以补偿,若采用标准NTSC或PAL&nbsp;或SECAM制式,且电路增益小于10dB和反馈电阻RF值小于500Ω,则补偿电容可以不要;通常情况下,反馈电阻RF值小于1kΩ以有效减小放大器寄生电容对高频特性的影响。<br /><br /><br /><br /><br /><br /><br />
tyw 发表于 2008-10-20 09:47 | 显示全部楼层

<H2>运算放大器的选择</H2><H3>技术分类:&nbsp;模拟设计&nbsp;&nbsp;|&nbsp;2008-01-07&nbsp;<br />作者:Paul&nbsp;Rako,EDN技术编辑</H3><br />  <font color=#0000FF>选择运放与这些器件的规格一样复杂。通过了解运放的基础知识,了解自己的应用要求,并使用独立工具和在线工具,就可以做出正确的选择。<br />  <b>要&nbsp;点<br /></b>  一只放大器的所有五只管脚都有重要规格。<br />  应用通常驱动选择过程。<br />  了解数据资料的各个部分,能更好地选择部件。<br />  半导体工艺影响着放大器的规格。<br />  在线工具与选择指南可以帮助你找到正确的器件。<br />  考虑使用专门的放大器。&nbsp;<br /></font><br />  你可能认为选择运放是件再简单不过的事。毕竟,所有运放都只有三个重要管脚:两个输入和一个输出。但是,在设计一款普通运放时,还必须考虑到另外两个电源脚,全部五个管脚组成了令人困惑的规格阵列。事实上,放大器设计与选择可能是最让模拟系统工程师生畏的任务。<br /><br /><img src="http://pagesadmin.**/images/article/07ea7b6d-df89-4576-b50b-0ba32a33ebcd/48-1.jpg"><br /><br />  在选择放大器时,必须确定该器件运行的最大电压和最小电压、静态电流、运放要为负载提供的电流,以及它使用的所有其它电流。例如,你可&nbsp;能将两个电源脚设定为用分离电源的双极运行,或者将负电源端接地,作单端运行(图&nbsp;1)。尽管任何放大器都可以接成双极或单端电路,但通常有一些其它因素会使器件更适合单端工作。另外,输入脚几乎总是包含了输入范围内的接地,或者提供满&nbsp;摆幅输入,此时输入脚可以&nbsp;<table class=ubb cellspacing=0><TR><td class=ubb>&nbsp;</td></TR></table>工作到电源两个极值上。还有一些事情也使设计复杂化,如运放数据资料一般都表示单端工作的规格,尽管测试工程师有可能修改器件的工作条件,并重新描述规格以反映双极工作状况。<br /><br /> &nbsp; 输出电流是一项重要规格。即使在输出脚低于两个电压线路&nbsp;0.6V&nbsp;情况下,满摆幅输出的器件也能提供可用的驱动电流。与双极输出的器件相比,采用&nbsp;FET&nbsp;输出的器件摆幅可以更接近两个电压线路。例如,Intersil&nbsp;的&nbsp;30mA&nbsp;EL5020在&nbsp;5&nbsp;mA&nbsp;时,可以在两个线路之间&nbsp;15&nbsp;mV&nbsp;的范围内摆动。为保证精确和低失真的性能,还必须了解输出脚阻抗,这个阻抗会随频率而变化。另外,输出脚必须驱动某种电平的容性负载。有些器件要驱动无限&nbsp;制的容性负载,如美国国家半导体公司的&nbsp;LM8272,而普通的视频放大器在数十个皮法的负载电容时就会振荡。<br /><br />  Analog&nbsp;Devices&nbsp;公司的应用工程总监&nbsp;Dave&nbsp;Kress&nbsp;认为,放大器选择有五个关键要素(图&nbsp;2):带宽、电源、一个封装中多只器件的要求、应用和成本。另一方面,德州仪器公司&nbsp;Burr-Brown&nbsp;部的线性应用经理&nbsp;Tim&nbsp;Green&nbsp;则将这些因素缩减为三点:电压、电流和带宽。<br /><br /><img src="http://pagesadmin.**/images/article/07ea7b6d-df89-4576-b50b-0ba32a33ebcd/48-2.jpg"><br />  不过,美国国家半导体公司的一名应用工程师&nbsp;Paul&nbsp;Grohe&nbsp;更多地考虑放大器的内部。他说:“偏置电流与带宽这两个&nbsp;B&nbsp;是关键。一个快速器件会消耗较多电流,而一个低噪声器件也会消耗较多电流。并且,如果你使用一个高的源阻抗,输入偏置电流就是最重要的规格。”<br /><br /> &nbsp; 美国国家半导体公司资深科学家&nbsp;Bob&nbsp;Pease&nbsp;指出,如果供应商不能及时提供器件,规格就没什么作用。他还说,噪声经常被忽视,但绝对是个极其关键的参数。他说:“不存在简单的答案,你必须自己作判&nbsp;断。每种应用都有一到两个主要参数,你必须找出它们。你不可能拥有一切。”<br /><br />  Tim&nbsp;Regan&nbsp;是&nbsp;Linear&nbsp;Technology&nbsp;的信号调节单元应用经理,他使用缩略词&nbsp;SNAP(供电电压与电流/交流或直流性能需要/放大器数量/封装)帮助工程师**这些重要的折衷关系。Maxim&nbsp;的运放与比较器商务营销经理&nbsp;Patrick&nbsp;Long&nbsp;也提到,封装是一个重要条件。例如,假设器件的目标应用是手机,你会希望用倒装或焊球封装。这些超小型封装可在一个硅片大小的电路板空间上提供高性能的模&nbsp;拟功能。<br /><br />  理解运放选择范围的一种方法是看数据单的结构。第一页是一个很有价值的工具,它给出了主要特性和目标应用。如果忽略那些营销&nbsp;术语(如“慢”和“快”),而寻找实际的速度图,就可以快速确定该放大器是否在自己应用的适用范围内。第一页可能说明了制造商用于制作该运放的工艺(见附&nbsp;文1“运算放大器工艺”)。<br /><br />  在运放数据资料中,紧跟第一页的一般是有关最大绝对额定值的部分。这部分通常包括器件将承受的最高电压和温度。显然,这一部分的重要位置表明这些参数在选择中的重要性,因为它们是绝对的最大值。任何时刻器件都不能超过这些极限值。<br /><br /> &nbsp; 数据资料中还有一些关于直流特性与交流特性及工作电压的表格。表格清楚地表明了在设计者建立表格时,器件可以运行的工作电压。第一页可能称器件能工作在&nbsp;低至&nbsp;2.7V&nbsp;电压下,而表格中可能表示器件可以运行在&nbsp;3V。虽然将一只&nbsp;3V&nbsp;器件运行在&nbsp;2.7V&nbsp;是可以接受的,但却不能使用&nbsp;3V&nbsp;下数据单表格中的规格值。你可以向制造商询问在较低电压下的器件特性,或者必须自己测试。表中的值都是制造商必须满足的契约责任。<br />数据资料中,表格后面是图表页。虽然这些图表并不表示一种法律责任,但它们很重要。例如,表格中可能表示一个很大的&nbsp;PSRR(电源抑制比),而图表却显示这个规格会随频率的增加而显著下降。如果一只放大器正用于一个有&nbsp;1MHz&nbsp;输出纹波的&nbsp;1MHz&nbsp;转换开关,则必须用相应图表对&nbsp;1MHz&nbsp;下的&nbsp;PSRR&nbsp;作出评估,并且要记住设计者创建图表时是在某个工作电压下,这种电压下可能得到比你的电路更好的结果。同样,表中的电压噪声是基于较高频率上的平坦噪声。&nbsp;对于直流或低频应用,必须查询图表,以确定你电路中频率对应的噪声(图&nbsp;3)。<br /><br /><img src="http://pagesadmin.**/images/article/07ea7b6d-df89-4576-b50b-0ba32a33ebcd/48-4.jpg"><br /><br />  检查所有图表,仔细考虑测量数据的工程师告诉你的内容。通常,半导体公司的工程师会有一张图表,强调了放大器不太平坦的规格。如果图表显示一只放大器在&nbsp;10&nbsp;pF&nbsp;输出电容时有&nbsp;90%&nbsp;的过冲,则可以认为该器件不稳定。<br /><br />  在一份典型的数据资料上,图表后面就是一般说明和应用部分。在这个部分,可以了解到该放大器的合适应用,以及所有特异或特别的功能。应用部分可能会提出警告,如果输出过驱动,器件可能会烧掉。在有些老器件上,应用部分可能警告说器件会出现倒相情况,即当输入脚超过其共模范围时,放大器的输出会突然逆向,哪怕输入并没有越过零点。<br /><br />  数据资料的最后,一般是器件号或后缀部分,但有些制造商(如&nbsp;TI)将这一信息放在首&nbsp;<table class=ubb cellspacing=0><TR><td class=ubb>&nbsp;</td></TR></table>页。每一种封装和额定电压的器件都有自己的器件号。制造商亦可能标&nbsp;注出包含无铅&nbsp;RoHS(限制有害物质)器件的号码。采用编带或&nbsp;4000&nbsp;只一盘的器件,其器件号也不一样。如果由于使用了一个不完整的器件号,导致用一个与预期不同的封装进行电路板布局,那会是很麻烦的事情。这类错误会付出延&nbsp;迟数周或数月开发周期的代价。<br /><br />  数据资料的最后一部分通常是封装,它包括图形以及建议的&nbsp;PCB&nbsp;(印制电路板)形式。如果你的&nbsp;PCB&nbsp;高度低,则封装的总体高度就是必须满足的关键性能规格。<br /><br />  <b>在线工具</b><br /><br /> &nbsp; 不要不好意思咨询本地的现场应用工程师或工厂应用小组。Analog&nbsp;Devices&nbsp;与德州仪器公司几乎销售各种类型的运放,因此他们没有理由说服你使用某种器件。这里有个特例,即制造商通常愿意推销自己的最新器件,希望以此收回设计费&nbsp;用。因此,美国国家半导体公司的&nbsp;Grohe&nbsp;喜欢用选择指南。他说:“参数化搜索会返回满足所需规格的全部器件,无论该器件是昨天设计的还是&nbsp;20&nbsp;年前设计的。”Grohe&nbsp;开发了一个可下载的选择指南,你可以从该公司的放大器网页获得。德州仪器、Analog&nbsp;Devices、意法半导体,以及其它公司亦提供在线的选择指南。<br /><br />  Linear&nbsp;Technology&nbsp;公司开发了另一种全功能、可下载的免费工具&nbsp;LT&nbsp;SPICE,由&nbsp;Mike&nbsp;Engelhardt&nbsp;设计。他保证该程序的集中性,甚至包括磁性元件。德州仪器公司亦提供可下载、有节点限制的全功能&nbsp;Tiny&nbsp;TI&nbsp;SPICE&nbsp;程序,将其用于精确模型能提供准确的结果。Analog&nbsp;Devices&nbsp;的网站上也有一个可下载的仿真器,以及&nbsp;ADIsim&nbsp;运放评估工具。该程序可用&nbsp;National&nbsp;Instruments&nbsp;的&nbsp;LabView&nbsp;引擎做简单仿真。当你选择了某款器件后,只要有现存的器件模型,工具就会转换为使用&nbsp;National&nbsp;Instruments&nbsp;的&nbsp;MultiSIM&nbsp;全&nbsp;SPICE&nbsp;引擎。除了&nbsp;SPICE&nbsp;工具以外,Analog&nbsp;Devices、美国国家半导体和德州仪器公司都提供网页工具,帮助设计仪表放大器,或一个单端放大器的正确偏置,以及大批的其它应用。<br /><br />  对于滤波器链的设计,德州仪器公司推出了自己的&nbsp;FilterPro&nbsp;软件。这种可下载的软件能完成数学计算,给出多极滤波器的响应。美国国家半导体公司为滤波器设计提供在线的&nbsp;Webench&nbsp;环境。它在线运行&nbsp;SPICE&nbsp;仿真,给出器件的响应。<br /><br />  运放的选择可以是让人望而生畏的事。除了普通的电压反馈放大器以外,还有很多专用放大器(见附文2“专用运算放大器”)。&nbsp;你可能需要阅读相关的贸易杂志与书籍,然后才能理解有关放大器选择的全部微妙之处。应用工程师可以在很大程度上帮助你了解自己应该寻找的正确规格与放大器&nbsp;类型。一旦你了解了这些情况,就可以使用各种可下载的选择向导与在线向导。然后可以在线仿真自己的电路,或通过下载的工具作仿真,还可以用供应商提供的&nbsp;SPICE&nbsp;模型,在&nbsp;Orcad、Altium、PADS&nbsp;或&nbsp;Electronics&nbsp;Workbench&nbsp;中仿真自己的电路。&nbsp;<hr>  <b>附文1:运算放大器工艺</b><br /><br />  有些放大器制造商认为,你应该仅凭规格来对一只器件作出判断,而不用担心制造它的工艺。虽然这种观点有其正确性,但几乎每个&nbsp;IC&nbsp;设计者和应用工程师都必须考虑半导体工艺以及规格。这样有助于他们对这些器件作广泛的分类,以及作出有关规格的某种假设。<br />制造商最初使用的工艺是双极工艺,它使用普通晶体管,而不是&nbsp;FET(场效应管)或&nbsp;MOSFET(金属氧化物半导体&nbsp;FET)。使用双极工艺意味着该器件可以工作在较高电压下,一般速度也更快。双极晶体管有较高的跨导,便于设计。如果使用一种隔离工艺,则设计的器件可以&nbsp;工作在高得多的频率下,因为内部杂散电容通常只有传统工艺的十分之一。这种类型的工艺一般采用介电质隔离法,即各个晶体管都处于自己的玻璃隔离皿中。有些&nbsp;工艺只是沟道隔离,即晶体管的侧面用玻璃隔离,但底部则采用普通双极工艺作结点隔离。沟道隔离器件的速度好于那些单纯的双极器件,但比不上完全介电质隔离&nbsp;器件。这种方法亦可以避免闩锁效应,即基材构成一个寄生&nbsp;SCR(可控硅整流器)。由于器件不会闩锁,就可以超出共模范围,并且在给器件加电前输入端就可以有电压。与所有模拟产品一样,介电质隔离也有一个缺点,&nbsp;甚至超出了较高的成本。所有晶体管周围玻璃壁的导热能力都要比结点隔离方法低&nbsp;10&nbsp;倍。因此,设计者对高输出电流放大的应用较少采用介电质隔离。<br /><br />  另外一种广泛使用的放大器工艺类别是&nbsp;CMOS(互补金属氧化物半导体)。CMOS&nbsp;器件价格较低,因为它们的制造工艺步骤较少。CMOS&nbsp;器件通常也有低的工作电流。CMOS&nbsp;的最佳特性之一是它的输入脚只需要极少的输入偏置电流。例如,德州仪器公&nbsp;<table class=ubb cellspacing=0><TR><td class=ubb>&nbsp;</td></TR></table>司的&nbsp;CMOS&nbsp;OPA2355&nbsp;的输入偏流为&nbsp;0.05&nbsp;nA,仅次于&nbsp;JFET(结型&nbsp;FET)输入器件。CMOS&nbsp;器件一般是&nbsp;5V&nbsp;供电,虽然也有一些&nbsp;12V&nbsp;CMOS&nbsp;工艺。由于早期&nbsp;CMOS&nbsp;器件利用了&nbsp;CMOS&nbsp;低工作电流的优势,因此这些器件表现为电压噪声,它不是&nbsp;CMOS&nbsp;固有的特性,而是设计中采用低偏流以及在输入段使用小晶体管的结果。例如,美国国家半导体公司用&nbsp;CMOS&nbsp;制造的&nbsp;LMV751,由于设计者采用大的输入晶体管,并且输入差分晶体管对有较高的静态电流,因此&nbsp;LMV751&nbsp;有低的电压噪声。另外一种&nbsp;BIMOS(双极&nbsp;MOS)工艺则同时包含了双极和&nbsp;CMOS&nbsp;晶体管。<br /><br />  还有一种不太常见但仍然有用的双极&nbsp;JFET&nbsp;工艺,它增加了掩膜步骤以创建&nbsp;JFET。与&nbsp;CMOS&nbsp;晶体管类似,JFET&nbsp;有低的输入偏流。较老的&nbsp;JFET&nbsp;器件(如美国国家半导体公司的&nbsp;LF411&nbsp;和&nbsp;Analog&nbsp;Devices&nbsp;公司的&nbsp;AD549)在&nbsp;CMOS&nbsp;器件流行前就能提供低的偏流。德州仪器公司提供的现代&nbsp;JFET&nbsp;器件有低偏流,但速度仍很快。例如,TI&nbsp;的&nbsp;OPA656&nbsp;带宽为&nbsp;500&nbsp;MHz。JFET&nbsp;的输入电压噪声亦低于&nbsp;CMOS,因为晶圆基材中的扩散掩盖了&nbsp;JFET。与之相比,CMOS&nbsp;晶体管位于裸芯的表面,这里它们受制于栅格缺陷和晶体杂质,这些都会产生噪声。同样,这种方案也包含一种均衡:用制造中的扩散控制&nbsp;JFET&nbsp;的参数。CMOS&nbsp;晶体管的特性主要依赖于制造中的光刻。因此,CMOS&nbsp;器件能做到更好的输入对匹配,降低了偏置电压,并减少了漂移。<br /><br /> &nbsp; 当某个应用要求的速度超过双极器件可以提供的极限时,设计者可以转向&nbsp;SiGe(硅锗)工艺。这些工艺在基极区有较高的电子迁移率、更薄的基极区,以及较高的射频电流密度,从而使运放带宽超过&nbsp;1&nbsp;GHz。这些器件消耗较多电流,并与所有其它的高速器件一样有稳定性问题。SiGe&nbsp;工艺正被用于高速&nbsp;ADC&nbsp;与高速通信放大器中的差分输入放大器。<br /><br /> &nbsp; 其它工艺包括&nbsp;GaAs(砷化镓)和&nbsp;SOS(蓝宝石硅)。GaAs&nbsp;工艺速度很快,并且有比&nbsp;SiGe&nbsp;更高的电子迁移率和更薄的基极区。GaAs&nbsp;的缺点与硅不同,它使用了不容易形成的隔离氧化物。硅氧化物是玻璃,可以隔离不同的金属化层。GaAs&nbsp;没有这种工艺特性,它追随硅工艺,但能制造工作在&nbsp;10&nbsp;GHz&nbsp;以上的器件。当然价格和工作电流也较高。在&nbsp;SOS&nbsp;工艺技术中,介质隔离的晶体管速度快,与氧化物隔离绝缘的工艺一样。但由于晶体管之间隔离采用蓝宝石而不是玻璃,蓝宝石是水晶的导热率,与之相比,玻璃的&nbsp;导热率较低。因此,SOS&nbsp;器件速度快,提供大量的功率输出。制造商可以用掩膜少于双极工艺的&nbsp;CMOS&nbsp;工艺流程进行制造。&nbsp;<hr>  <b>附文2:专用运算放大器</b><br /><br /> &nbsp; 设计者通常会说,他们对运放的选择原则是使用主流放大器。现在有一些专用类型的放大器。最常见的是电流反馈放大器,它用于需要高转换速率的视频与&nbsp;DSL(数字用户线)应用(图&nbsp;A)。其它的独特好处是高增益不会减小带宽。如果一款放大器可以提供与较高带宽元件相同的增益,则它的失真也较低。因此,电流反馈放大器适用于需要高速和&nbsp;低失真的应用。<br /><br /><img src="http://pagesadmin.**/images/article/07ea7b6d-df89-4576-b50b-0ba32a33ebcd/48-3.jpg"><br />  还有一种专用放大器是混合放大器,它内部使用分立晶体管或拥有多级放大器,即一种信号用多个放大器,而不是采用多个封装。例&nbsp;如,Cirrus&nbsp;Logic&nbsp;的&nbsp;CS3001&nbsp;系列有&nbsp;1&nbsp;万亿(或&nbsp;300&nbsp;dB)的开环增益,这是其信号链中有一个以上放大器的确切标志。相位响应表明,这款器件是一种混合放大器,适用于仪器应用。巨大增益意味着低失真。<br />另一种形式的混合放大器是斩波放大器,或自动调零放大器。这些放大器也叫做自动归零放大器,它有一个不断校正偏移电压的第二个放大器。这种功能适用于直流&nbsp;仪器中使用的器件,特别是偏移校正可以消除低频噪声。缺点是这些器件速度慢,而它们的斩波频率一般在&nbsp;100Hz~35kHz范围内,会对输出造成干扰。这个频率远远超出预期的有用频率,要用后面的滤波器级将其过滤掉。一个值得注意的例外是美国国家半导体&nbsp;公司的&nbsp;LMP2011,它拥有与斩波放大器相应的微伏级偏移,而仍有&nbsp;3&nbsp;MHz&nbsp;的带宽。该器件亦提供比其它斩波放大器更好的瞬态响应与转换速率。<br /><br />  差分输出放大器提供一个音频信号路径,它不受接地回路或缓冲差分输入&nbsp;ADC&nbsp;的影响。差分输出音频放大器工作在千赫兹范围,而&nbsp;ADC&nbsp;缓冲则工作在千兆赫兹范围。<br /><br /> &nbsp; 仪表放大器通常是有三个放大器的混合式放大器,这样输入可以工作在大的共模范围内。当你改变一只普通放大器正引脚的电压时,输出电压会跟随输入电压变&nbsp;化,同时输入脚之间的差值使输出端超出该电平。另一方面,仪表放大器有基准脚,它将输出基准设定在所需的电压,一般为地。这一特性使它们能用于测量&nbsp;Whe&nbsp;<table class=ubb cellspacing=0><TR><td class=ubb>&nbsp;</td></TR></table>atstone&nbsp;桥传感器,如压力规,也可以用于测量高侧电流。它的缺点是速度低和成本高。仪表放大器的通常目标用途是直流信号。有些具有5Hz&nbsp;~&nbsp;0.5MHz的带宽(根据增益),如德州仪器公司&nbsp;Burr-Brown&nbsp;部的&nbsp;PGA206。这些器件有数字可编程的增益,并采用&nbsp;JFET(结型场效应晶体管)输入级,提供低噪声和高速度。<br /><br />  其它专用放大器已不太流行,但对那些了解如何使用的模拟专家来说,它们仍&nbsp;然是有用的。互导放大器(如美国国家半导体公司的&nbsp;LM13700)有可变增益。它们将控制脚上的输入电流乘以放大器输入脚上的电压。数据资料值得一读的原因只是因为它覆盖了繁多应用(参考文献&nbsp;A)。该公司的&nbsp;LM3900&nbsp;Norton&nbsp;放大器已经过时,但&nbsp;LM359&nbsp;仍在生产。这些放大器采用&nbsp;Norton&nbsp;的电流定律,它作用于进入电源镜像的一个电流差,与几乎所有其它放大器所采用的输入差分对相反。该器件很少见,但能为分析与理解提供一种有趣的练习(参考&nbsp;文献&nbsp;B)。On&nbsp;Semiconductor&nbsp;公司的&nbsp;MC33304&nbsp;电源自适应放大器也已过时,但仍令人感兴趣,因为无论何时其输出电流超过用户选择的阈值时,它的静态电流与频率响应都会增加。<br /><br /><i><font color=#FF9900>参考文献&nbsp;<br />A.&nbsp;&nbsp;&quot;LM13700—Dual&nbsp;Operational&nbsp;Transconductance&nbsp;Amplifier&nbsp;with&nbsp;Linearizing&nbsp;Diodes&nbsp;and&nbsp;Buffers,&quot;&nbsp;National&nbsp;Semiconductor,&nbsp;2007.&nbsp;<br />B.&nbsp;&nbsp;&quot;LM359&nbsp;Dual,&nbsp;High&nbsp;Speed,&nbsp;Programmable,&nbsp;Current&nbsp;Mode&nbsp;(Norton)&nbsp;Amplifiers,&quot;&nbsp;National&nbsp;Semiconductor,&nbsp;August&nbsp;2000.&nbsp;</font></i>
cauweiqiang 发表于 2011-3-11 16:17 | 显示全部楼层
可以mark么?
ttlasong 发表于 2011-3-20 21:25 | 显示全部楼层
仔细,慢慢看看。
zt20071212 发表于 2011-3-21 08:41 | 显示全部楼层
T叔,直接上书吧。好多图米有
lycf 发表于 2011-6-7 17:09 | 显示全部楼层
仔细看,mark!
yanwen217 发表于 2011-6-8 10:58 | 显示全部楼层
ADI/TI的运放种类齐全、基本可以满足当前大部分的设计要求,但就是价格高。
微功耗运放、低功耗运放、高速运放、低噪声运放、高精度运放、通用运放,不妨对比下圣邦微电子的,品质堪比ADI/TI,价格就实惠很多:

本帖子中包含更多资源

您需要 登录 才可以下载或查看,没有账号?注册

×
gunzhusigan 发表于 2012-7-17 20:41 | 显示全部楼层
路过!但会仔细看!






SIGNATURE............................................................................................................................................................
滚珠丝杠|http://www.gunzhusigan.com/
您需要登录后才可以回帖 登录 | 注册

本版积分规则

6

主题

8

帖子

0

粉丝
快速回复 在线客服 返回列表 返回顶部