/**************************************************************************//**
* [url=home.php?mod=space&uid=288409]@file[/url] main.c
* [url=home.php?mod=space&uid=895143]@version[/url] V2.0
* $Revision: 6 $
* $Date: 14/08/05 11:13a $
* @brief
* Demonstrate how to communicate with an off-chip SPI slave device with Dual I/O mode and FIFO mode.
* This sample code needs to work with SPI_SlaveDualIOMode sample code.
* @note
* Copyright (C) 2014 Nuvoton Technology Corp. All rights reserved.
*
******************************************************************************/
#include <stdio.h>
#include "NUC123.h"
#define TEST_COUNT 16
uint32_t g_au32SourceData[TEST_COUNT];
uint32_t g_au32DestinationData[TEST_COUNT];
volatile uint32_t g_u32TxDataCount;
volatile uint32_t g_u32RxDataCount;
/* Function prototype declaration */
void SYS_Init(void);
void SPI_Init(void);
/* ------------- */
/* Main function */
/* ------------- */
int main(void)
{
uint32_t u32DataCount;
/* Unlock protected registers */
SYS_UnlockReg();
/* Init System, IP clock and multi-function I/O */
SYS_Init();
/* Lock protected registers */
SYS_LockReg();
/* Configure UART0: 115200, 8-bit word, no parity bit, 1 stop bit. */
UART_Open(UART0, 115200);
/* Init SPI */
SPI_Init();
printf("\n\n");
printf("+--------------------------------------------------------+\n");
printf("| SPI Master Mode Sample Code |\n");
printf("+--------------------------------------------------------+\n");
printf("\n");
printf("Configure SPI0 as a master.\n");
printf("Bit length of a transaction: 32\n");
printf("The I/O connection for SPI0:\n");
printf(" SPI0_SS0 (PC.0)\n SPI0_CLK (PC.1)\n");
printf(" SPI0_MISO0 (PC.2)\n SPI0_MOSI0 (PC.3)\n\n");
printf("SPI controller will enable Dual I/O mode and FIFO mode, then transfer %d data to a off-chip slave device.\n", TEST_COUNT);
printf("Afterward the SPI controller will receive %d data from the off-chip slave device.\n", TEST_COUNT);
printf("After the transfer is done, the %d received data will be printed out.\n", TEST_COUNT);
printf("The SPI master configuration is ready.\n");
for(u32DataCount = 0; u32DataCount < TEST_COUNT; u32DataCount++)
{
/* Write the initial value to source buffer */
g_au32SourceData[u32DataCount] = 0x00550000 + u32DataCount;
/* Clear destination buffer */
g_au32DestinationData[u32DataCount] = 0;
}
printf("Before starting the data transfer, make sure the slave device is ready.\n");
printf("Press any key to start the Dual I/O output transfer.");
getchar();
printf("\n");
/* Enable Dual I/O output mode */
SPI_ENABLE_DUAL_OUTPUT_MODE(SPI0);
/* Enable FIFO mode, set TX FIFO threshold, enable TX FIFO threshold interrupt and RX FIFO time-out interrupt */
SPI_EnableFIFO(SPI0, 2, 2);
SPI_EnableInt(SPI0, SPI_FIFO_TX_INT_MASK | SPI_FIFO_TIMEOUT_INT_MASK);
g_u32TxDataCount = 0;
g_u32RxDataCount = 0;
NVIC_EnableIRQ(SPI0_IRQn);
/* Wait for transfer done */
while(g_u32RxDataCount < TEST_COUNT);
/* Enable Dual I/O input mode */
SPI_ENABLE_DUAL_INPUT_MODE(SPI0);
printf("Dual I/O output transfer is done. Before starting the Dual I/O input transfer, make sure the slave device is ready.\n");
printf("Press any key to start the Dual I/O input transfer.");
getchar();
printf("\n");
g_u32TxDataCount = 0;
g_u32RxDataCount = 0;
SPI_EnableInt(SPI0, SPI_FIFO_TX_INT_MASK | SPI_FIFO_TIMEOUT_INT_MASK);
/* Wait for transfer done */
while(g_u32RxDataCount < TEST_COUNT);
/* Print the received data */
printf("Received data:\n");
for(u32DataCount = 0; u32DataCount < TEST_COUNT; u32DataCount++)
{
printf("%d:\t0x%X\n", u32DataCount, g_au32DestinationData[u32DataCount]);
}
/* Disable TX FIFO threshold interrupt and RX FIFO time-out interrupt */
SPI_DisableInt(SPI0, SPI_FIFO_TX_INT_MASK | SPI_FIFO_TIMEOUT_INT_MASK);
NVIC_DisableIRQ(SPI0_IRQn);
printf("\n\nExit SPI driver sample code.\n");
/* Disable SPI0 peripheral clock */
SPI_Close(SPI0);
while(1);
}
void SYS_Init(void)
{
/*---------------------------------------------------------------------------------------------------------*/
/* Init System Clock */
/*---------------------------------------------------------------------------------------------------------*/
/* Enable XT1_OUT (PF0) and XT1_IN (PF1) */
SYS->GPF_MFP |= SYS_GPF_MFP_PF0_XT1_OUT | SYS_GPF_MFP_PF1_XT1_IN;
/* Enable external 12MHz XTAL */
CLK_EnableXtalRC(CLK_PWRCON_XTL12M_EN_Msk);
/* Waiting for clock ready */
CLK_WaitClockReady(CLK_CLKSTATUS_XTL12M_STB_Msk);
/* Switch HCLK clock source to HXT and HCLK source divide 1 */
CLK_SetHCLK(CLK_CLKSEL0_HCLK_S_HXT, CLK_CLKDIV_HCLK(1));
/* Select HXT as the clock source of UART0 */
CLK_SetModuleClock(UART0_MODULE, CLK_CLKSEL1_UART_S_HXT, CLK_CLKDIV_UART(1));
/* Select HCLK as the clock source of SPI0 */
CLK_SetModuleClock(SPI0_MODULE, CLK_CLKSEL1_SPI0_S_HCLK, MODULE_NoMsk);
/* Enable UART peripheral clock */
CLK_EnableModuleClock(UART0_MODULE);
/* Enable SPI0 peripheral clock */
CLK_EnableModuleClock(SPI0_MODULE);
/* Update System Core Clock */
/* User can use SystemCoreClockUpdate() to calculate PllClock, SystemCoreClock and CyclesPerUs automatically. */
SystemCoreClockUpdate();
/*---------------------------------------------------------------------------------------------------------*/
/* Init I/O Multi-function */
/*---------------------------------------------------------------------------------------------------------*/
/* Set PB multi-function pins for UART0 RXD and TXD */
SYS->GPB_MFP = SYS_GPB_MFP_PB0_UART0_RXD | SYS_GPB_MFP_PB1_UART0_TXD;
/* Setup SPI0 multi-function pins */
SYS->GPC_MFP = SYS_GPC_MFP_PC0_SPI0_SS0 | SYS_GPC_MFP_PC1_SPI0_CLK | SYS_GPC_MFP_PC2_SPI0_MISO0 | SYS_GPC_MFP_PC3_SPI0_MOSI0;
SYS->ALT_MFP = SYS_ALT_MFP_PC0_SPI0_SS0 | SYS_ALT_MFP_PC1_SPI0_CLK | SYS_ALT_MFP_PC2_SPI0_MISO0 | SYS_ALT_MFP_PC3_SPI0_MOSI0;
}
void SPI_Init(void)
{
/*---------------------------------------------------------------------------------------------------------*/
/* Init SPI */
/*---------------------------------------------------------------------------------------------------------*/
/* Configure SPI0 as a master, clock idle low, 32-bit transaction, drive output on falling clock edge and latch input on rising edge. */
/* Set IP clock divider. SPI clock rate = 2 MHz */
SPI_Open(SPI0, SPI_MASTER, SPI_MODE_0, 32, 2000000);
/* Enable the automatic hardware slave select function. Select the SPI0_SS0 pin and configure as low-active. */
SPI_EnableAutoSS(SPI0, SPI_SS0, SPI_SS_ACTIVE_LOW);
}
void SPI0_IRQHandler(void)
{
/* Check RX EMPTY flag */
while(SPI_GET_RX_FIFO_EMPTY_FLAG(SPI0) == 0)
{
/* Read RX FIFO */
g_au32DestinationData[g_u32RxDataCount++] = SPI_READ_RX0(SPI0);
}
/* Check TX FULL flag and TX data count */
while((SPI_GET_TX_FIFO_FULL_FLAG(SPI0) == 0) && (g_u32TxDataCount < TEST_COUNT))
{
/* Write to TX FIFO */
SPI_WRITE_TX0(SPI0, g_au32SourceData[g_u32TxDataCount++]);
}
if(g_u32TxDataCount >= TEST_COUNT)
SPI_DisableInt(SPI0, SPI_FIFO_TX_INT_MASK); /* Disable TX FIFO threshold interrupt */
/* Check the RX FIFO time-out interrupt flag */
if(SPI_GetIntFlag(SPI0, SPI_FIFO_TIMEOUT_INT_MASK))
{
/* If RX FIFO is not empty, read RX FIFO. */
while(SPI_GET_RX_FIFO_EMPTY_FLAG(SPI0) == 0)
g_au32DestinationData[g_u32RxDataCount++] = SPI_READ_RX0(SPI0);
}
}
/*** (C) COPYRIGHT 2014 Nuvoton Technology Corp. ***/
|