通过上述示意图我们也可以看到在返回地址这个地方,中断服务子程序和函数调用子程序的返回地址所遵循的原理是一样的,函数调用子程序的返回地址是函数调用指令的下一条指令的地址,而在上述示意图中的 N 和 N+1 的含义也是类似的,当 CPU 执行到第 N 条指令的时候,CPU 接收到了一个中断请求,在执行完第 N 条指令之后,转而去执行中断服务子程序的内容,然后中断服务子程序的返回地址对应的是第 N+1 条指令的地址。
中断的堆栈占用
在刚刚所述的内容中,说到 CPU 在执行中断服务子程序的内容之前,需要保护现场,那保护现场这个操作具体是怎么实现的呢?这个时候,就要用到我们的堆栈了。在这里拿 ARM Cortex M3 举例,在响应中断时所做的第一个操作就是保护现场,它会依次把 xPSR,PC,LR,R12以及 R3-R0 由硬件自动压入适当的堆栈中,注意,这里是自动压入堆栈,也就是说如果我们看对应的汇编代码是看不到这部分压栈操作的。另外,我们知道对于 ARM Cortex M3 的堆栈来说,它存在两个,一个是主堆栈指针(MSP),一个是线程堆栈指针(PSP),其中主堆栈指针是复位后默认使用的堆栈指针,用于操作系统内核和中断处理程序,线程堆栈指针(PSP)是由用户的应用程序代码所使用。那么在执行现场保护时将相关寄存器的值压入堆栈,应该使用哪个堆栈指针呢?这也是存在一个原则的,如果在响应中断时,当前的代码正在使用线程堆栈指针(PSP),那么将使用线程堆栈指针(PSP)进行压栈,否则将使用主堆栈指针(MSP)。另外在 CPU 进入中断服务子程序之后,所涉及的堆栈操作所使用的堆栈一直是主堆栈指针(MSP)。为了更直观的展示这个过程,下图是发生中断请求后,堆栈的变化示意图:
中断向量表
在上述所阐述的内容中,我们知道了中断会在主程序的任意发生中断请求,从而执行中断服务子程序的内容,也阐述了在执行中断服务子程序的内容之前需要进行保护现场的操作,以及执行完中断服务子程序的内容之后需要进行恢复现场。现在我们再来思考,在 CPU 中,中断源不止一种,可以是按键按下所触发的一个外部中断,也可能是在使用串行通信时,收到数据所触发的一个中断,亦或者在 CPU 中定义的一个定时中断由于设置的时间到了而触发的定时中断,这个时候,就浮现一个问题了,要如何将这一个一个的中断源与其各自的中断服务子程序所一一对应起来呢?换句更为通俗的话来讲就是当 CPU 接收到一个中断信号时,CPU 将如何找到对应的中断服务子程序进行执行呢?这个时候,就需要中断向量表了,下面是中断向量表的特点:
中断向量表在 CPU 中是一段连续的存储空间
中断向量表在 CPU 复位后有默认的起始地址
每一个中断在中断向量表中都有对应的表项,该表项的值为该中断源对应的中断服务程序的地址
由程序代码确定中断向量表中的每个表项
上述特点说中断向量表都存在默认的起始地址,在这里依旧拿 ARM Cortex M3 内核来看,它的中断向量表默认的起始地址是从地址 0x0000 0000 开始的,如下图所示:
当然这只是一部分,并不是全部的表项。有了中断向量表之后,那么当 CPU 接收到中断请求的时候,就会根据这个中断请求的信号去查这个表,从而查找到其所对应的中断服务子程序的地址,然后将这个地址赋值给 PC 指针寄存器就,那么 CPU 就可以完成中断服务子程序的执行了,对于 PC 指针寄存器不是太清楚地朋友可以看笔者的这篇** 《程序是如何在 CPU 中运行的(二)》。
中断服务函数的写法
中断服务函数的写法不同的 CPU 有各自不同的写法,对于 ARM Cortex M3 的 CPU 来说,因为其内核的特点,在执行完中断服务函数后的返回指令与普通函数调用的返回指令是一样的,因此中断服务函数的写法与 C 语言中普通函数的定义没有区别,比如下面是 STM32F103 的一个外部中断的服务函数