打印

RCC Configuration(学习笔记)

[复制链接]
336|0
手机看帖
扫描二维码
随时随地手机跟帖
跳转到指定楼层
楼主
冷冻链|  楼主 | 2018-7-9 10:52 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
1、什么是时钟
时钟是单片机运行的基础,时钟信号推动单片机内各个部分执行相应的指令。时钟系统就是CPU的脉搏,决定cpu速率,像人的心跳一样 只有有了心跳,人才能做其他的事情,而单片机有了时钟,才能够运行执行指令,才能够做其他的处理 (点灯,串口,ADC),时钟的重要性不言而喻。为什么 STM32 要有多个时钟源呢?STM32本身十分复杂,外设非常多  但我们实际使用的时候只会用到有限的几个外设,使用任何外设都需要时钟才能启动,但并不是所有的外设都需要系统时钟那么高的频率,为了兼容不同速度的设备,有些高速,有些低速,如果都用高速时钟,势必造成浪费   并且,同一个电路,时钟越快功耗越快,同时抗电磁干扰能力也就越弱,所以较为复杂的MCU都是采用多时钟源的方法来解决这些问题。所以便有了STM32的时钟系统和时钟树

总结:
>> STM32时钟系统主要的目的就是给相对独立的外设模块提供时钟,也是为了降低整个芯片的耗能。
>> 系统时钟,是处理器运行时间基准(每一条机器指令一个时钟周期)
>> 时钟是单片机运行的基础,时钟信号推动单片机内各个部分执行相应的指令。
>> 一个单片机内提供多个不同的系统时钟,可以适应更多的应用场合。
>> 不同的功能模块会有不同的时钟上限,因此提供不同的时钟,也能在一个单片机内放置更多的功能模块。
>> 对不同模块的时钟增加开启和关闭功能,可以降低单片机的功耗
>> STM32为了低功耗,他将所有的外设时钟都设置为disable(不使能),用到什么外设,只要打开对应外设的时钟就可以, 其他的没用到的可以还是              disable(不使能),这样耗能就会减少。  这就是为什么不管你配置什么功能都需要先打开对应的时钟的原因

STM32的时钟系统框图
乍一看很吓人,但其实很好理解,我们看系统时钟SYSCLK 的左边  系统时钟有很多种选择,而左边的部分就是设置系统时钟使用那个时钟源,   系统时钟SYSCLK 的右边,则是系统时钟通过AHB预分频器,给相对应的外设设置相对应的时钟频率
从左到右可以简单理解为  各个时钟源--->系统时钟来源的设置--->各个外设时钟的设置
时钟系统
1、各个时钟源    (左边的部分)
STM32 有4个独立时钟源:HSI、HSE、LSI、LSE。
①HSI是高速内部时钟,RC振荡器,频率为8MHz,精度不高。
②HSE是高速外部时钟,可接石英/陶瓷谐振器,或者接外部时钟源,频率范围为4MHz~16MHz。
③LSI是低速内部时钟,RC振荡器,频率为40kHz,提供低功耗时钟。 
④LSE是低速外部时钟,接频率为32.768kHz的石英晶体。


其中LSI是作为IWDGCLK(独立看门狗)时钟源和RTC时钟源 而独立使用 而HSI高速内部时钟 HSE高速外部时钟 LSI低速内部时钟  这三个经过分频或者倍频 作为系统时钟来使用
PLL为锁相环倍频输出,其时钟输入源可选择为HSI/2、HSE或者HSE/2。倍频可选择为2~16倍,但是其输出频率最大不得超过72MHz。  通过倍频之后作为系统时钟的时钟源或者内部RC振荡器(HSI) 为8MHz  /2 为4MHz 进入PLLSRC选择开关,通过PLLMUL锁相环进行倍频(x16)后 为72MHzPS:  网上有很多人说是5个时钟源,这种说法有点问题,学习之后就会发现PLL并不是自己产生的时钟源,而是通过其他三个时钟源倍频得到的时钟
2、系统时钟SYSCLK系统时钟SYSCLK可来源于三个时钟源:
①、HSI振荡器时钟
②、HSE振荡器时钟
③、PLL时钟
最大为72Mhz

3、USB时钟

STM32中有一个全速功能的USB模块,其串行接口引擎需要一个频率为48MHz的时钟源。该时钟源只能从PLL输出端获取(唯一的),,可以选择为1.5分频或者1分频,也就是,当需要使用USB模块时,PLL必须使能,并且时钟频率配置为48MHz或72MHz
4、把时钟信号输出到外部
STM32可以选择一个时钟信号输出到MCO脚(PA8)上,可以选择为PLL输出的2分频、HSI、HSE、或者系统时钟。可以把时钟信号输出供外部使用
5、系统时钟通过AHB分频器给外设提供时钟(右边的部分)  重点从左到右可以简单理解为  系统时钟--->AHB分频器--->各个外设分频倍频器 --->   外设时钟的设置
右边部分为:系统时钟SYSCLK通过AHB分频器分频后送给各模块使用,AHB分频器可选择1、2、4、8、16、64、128、256、512分频。其中AHB分频器输出的时钟送给5大模块使用:
①内核总线:送给AHB总线、内核、内存和DMA使用的HCLK时钟。

②Tick定时器:通过8分频后送给Cortex的系统定时器时钟。

③I2S总线:直接送给Cortex的空闲运行时钟FCLK。

④APB1外设:送给APB1分频器。APB1分频器可选择1、2、4、8、16分频,其输出一路供APB1外设使用(PCLK1,最大频率36MHz),另一路送给通用定时器使用。该倍频器可选择1或者2倍频,时钟输出供定时器2-7使用。
⑤APB2外设:送给APB2分频器。APB2分频器可选择1、2、4、8、16分频,其输出一路供APB2外设使用(PCLK2,最大频率72MHz),另一路送给高级定时器。该倍频器可选择1或者2倍频,时钟输出供定时器1和定时器8使用。
另外,APB2分频器还有一路输出供ADC分频器使用,分频后送给ADC模块使用。ADC分频器可选择为2、4、6、8分频。
需要注意的是,如果 APB 预分频器分频系数是 1,则定时器时钟频率 (TIMxCLK) 为 PCLKx。否则,定时器时钟频率将为 APB 域的频率的两倍:TIMxCLK = 2xPCLKx。
APB1和APB2的对应外设F1系列

APB1上面连接的是低速外设,包括电源接口、备份接口、CAN、USB、I2C1、I2C2、USART2、USART3、UART4、UART5、SPI2、SP3等;
而APB2上面连接的是高速外设,包括UART1、SPI1、Timer1、ADC1、ADC2、ADC3、所有的普通I/O口(PA-PE)、第二功能I/O(AFIO)口等。
F4系列
这个和F1系列类似,我们就举几个特殊的
APB2总线:高级定时器timer1, timer8以及通用定时器timer9, timer10, timer11   UTART1,USART6APB1总线:通用定时器timer2~timer5,通用定时器timer12~timer14以及基本定时器timer6,timer7  UTART2~UTART5
F4系列的系统时钟频率最高能到168M
具体  可以在 stm32f10x_rcc.h  和stm32f40x_rcc.h   中查看
或者通过 STM32参考手册搜索“系统架构”或者“系统结构”  查看外设挂在哪个时钟下,


RCC相关寄存器:这里我们以F1系列为例
RCC 寄存器结构,RCC_TypeDeff,在文件“stm32f10x.h”中定义如下:

1059行->1081行。:  
typedef struct  
{  
vu32 CR;                  //HSI,HSE,CSS,PLL等的使能  
vu32 CFGR;              //PLL等的时钟源选择以及分频系数设定
vu32 CIR;                // 清除/使能 时钟就绪中断
vu32 APB2RSTR;      //APB2线上外设复位寄存器
vu32 APB1RSTR;      //APB1线上外设复位寄存器
vu32 AHBENR;         //DMA,SDIO等时钟使能
vu32 APB2ENR;       //APB2线上外设时钟使能
vu32 APB1ENR;      //APB1线上外设时钟使能
vu32 BDCR;           //备份域控制寄存器
vu32 CSR;            
} RCC_TypeDef;

可以对上上面的时钟框图和RCC寄存器来学习,对STM32的时钟系统有个大概的了解   其实也就是我们上面介绍的流程,理解了自然也就能写出来
RCC初始化:这里我们使用HSE(外部时钟),正常使用的时候也都是使用外部时钟


使用HSE时钟,程序设置时钟参数流程:
1、将RCC寄存器重新设置为默认值   RCC_DeInit;
2、打开外部高速时钟晶振HSE       RCC_HSEConfig(RCC_HSE_ON);
3、等待外部高速时钟晶振工作      HSEStartUpStatus = RCC_WaitForHSEStartUp();
4、设置AHB时钟         RCC_HCLKConfig;
5、设置高速AHB时钟     RCC_PCLK2Config;
6、设置低速速AHB时钟   RCC_PCLK1Config;
7、设置PLL              RCC_PLLConfig;
8、打开PLL              RCC_PLLCmd(ENABLE);
9、等待PLL工作          while(RCC_GetFlagStatus(RCC_FLAG_PLLRDY) == RESET)
10、设置系统时钟        RCC_SYSCLKConfig;
11、判断是否PLL是系统时钟     while(RCC_GetSYSCLKSource() != 0x08)
12、打开要使用的外设时钟      RCC_APB2PeriphClockCmd()/RCC_APB1PeriphClockCmd()


代码实现:对RCC的配置函数(使用外部8MHz晶振)  系统时钟72MHz,APH 72MHz,APB2 72MHz,APB1 32MHz,USB 48MHz TIMCLK=72Mvoid RCC_Configuration(void){        //----------使用外部RC晶振-----------        RCC_DeInit();                        //初始化为缺省值        RCC_HSEConfig(RCC_HSE_ON);        //使能外部的高速时钟         while(RCC_GetFlagStatus(RCC_FLAG_HSERDY) == RESET);        //等待外部高速时钟使能就绪                FLASH_PrefetchBufferCmd(FLASH_PrefetchBuffer_Enable);        //Enable Prefetch Buffer        FLASH_SetLatency(FLASH_Latency_2);                //Flash 2 wait state                RCC_HCLKConfig(RCC_SYSCLK_Div1);                //HCLK = SYSCLK        RCC_PCLK2Config(RCC_HCLK_Div1);                        //PCLK2 =  HCLK        RCC_PCLK1Config(RCC_HCLK_Div2);                        //PCLK1 = HCLK/2        RCC_PLLConfig(RCC_PLLSource_HSE_Div1,RCC_PLLMul_9);        //PLLCLK = 8MHZ * 9 =72MHZ        RCC_PLLCmd(ENABLE);                        //Enable PLLCLK
        while(RCC_GetFlagStatus(RCC_FLAG_PLLRDY) == RESET);        //Wait till PLLCLK is ready    RCC_SYSCLKConfig(RCC_SYSCLKSource_PLLCLK);        //Select PLL as system clock        while(RCC_GetSYSCLKSource()!=0x08);                //Wait till PLL is used as system clock source                //---------打开相应外设时钟--------------------        RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA,ENABLE);        //使能APB2外设的GPIOA的时钟                 }也就是我们时钟树框图从左到右的配置,


时钟监视系统(CSS)

STM32还提供了一个时钟监视系统(CSS),用于监视高速外部时钟(HSE)的工作状态。倘若HSE失效,会自动切换(高速内部时钟)HSI作为系统时钟的输入,保证系统的正常运行。

使用特权

评论回复

相关帖子

发新帖 我要提问
您需要登录后才可以回帖 登录 | 注册

本版积分规则

397

主题

397

帖子

0

粉丝