双向电流控制器 用于 12/48 V 系统的电源管理组件设计需满足 LV 148 标准。尤其,这对芯片的过压提出了较高要求。该标准允许 48 V 电源轨的最大电压最高可升至 70 V 并至少持续 40 ms,并允许系统在此类过电压事件期间保持正常工作而不会造成任何性能损失。对于半导体供应商来说,这意味着连接到汽车 48 V 电源轨的所有设备都必须能够承受 70 V 的输入电压(加上安全裕量,使总体要求达到 100 V)。 Linear Technology 的 LT8228 是设计符合 LV 148 规格要求的双向电源示例,它是一款带有独立补偿网络的 100 V 双向恒流或恒压同步降压或升压控制器(请参阅 Digi-Key 技术**《DC-DC 开关稳压器中用于 PWM 信号发生的电压和电流模式控制》)。 该控制器接受两个输入:V1,由锂离子电池提供的 24 至 54 V 电源;以及 V2,由铅酸电池提供的 14 V 输入(图 2)。在升压模式下,输出为 10 A、48 V,降压模式下为 40 A、14 V。该芯片的输入和输出端均可承受 100 V 的电压。操作模式可由微控制器通过 DRXN 引脚从外部控制,也可自动选择。
图 2:Linear Technology 的 LT8228 双向电源可提供升压或降压,最大承受 100 V 电压,符合 LV 148 规格要求。(图片来源:Linear Technology) 输入和输出 MOSFET 可以防止负电压,控制浪涌电流并在故障条件下(例如开关 MOSFET 短路)在端子之间提供隔离。在降压模式下,V1(24 V 至 54 V 输入)端子上的保护 MOSFET 可防止反向电流。在升压模式下,这些 MOSFET 可调节输出浪涌电流,并通过可调定时断路器来保护自身。内部和外部故障诊断和报告可通过专用的引脚获得。 Texas Instruments (TI) 也提供了一款符合 LV 148 的高性能、双通道双向电流控制器 LM5170。该器件可管理高压端口(HV 端口)(连接到 48 V 锂离子电池)与低压端口(LV 端口)(连接到 12 V 铅酸电池)之间的电流传输。使用独立使能信号可激活双向控制器的各个通道。 双通道差分电流感测传感器和专用通道电流监测仪实现了 1% 的典型精度。可靠的 5 A 半桥栅极驱动器能够控制每通道功率不低于 500 W 的并联 MOSFET 开关。该控制器可以工作在断续模式下,以在轻负载条件下实现更高的能效(请参阅 Digi-Key 技术**《开关稳压器连续模式和断续模式之差异及其重要性》),并防止负电流。保护功能包括逐周期峰值限流、48 V 和 12 V 电池电源轨的过压保护、MOSFET 开关故障检测和保护,以及过热保护。 LM5170 采用平均电流模式控制,消除了升压工作模式中的右半平面零点,并在任意工作电压和负载水平下保持恒定的回路增益,从而简化了补偿。 Linear Technology 和 TI 双向电流控制器包含的功能使得双 12/48 V 汽车电子器件的电源管理电路设计更为简单。例如,无论是从一个电池升压,还是从另一个电池降压,都可以使用相同的外部电源组件,因此节省了空间和成本,降低了电路复杂性。但是,选择这些外部元器件时必须小心谨慎。 应用电路设计 在使用 LT8228(以及 TI 器件)时,外部元器件的选择通常以能够实现良好的开关稳压器设计为准。例如,从优化能效、物理尺寸和成本角度,可按照开关频率 (fSW) 和电感值 (L) 选择。同样,从电感器峰值限流、能效和电流检测精度角度,可按照电感电流检测电阻 RSNS2 及其输入增益电阻 RIN2 来选择(图 3)。
图 3:Linear Technology LT8228 的框图展示了典型应用所需的外部元器件。(图片来源:Linear Technology) 选择电容器 CDM2 来限制降压输入和升压输出的纹波电压;同样,选择电容器 CDM4 来限制升压输入和降压输出的纹波电压。V1D 引脚处的电容器 CDM1 用于通过旁路滤除噪声。按照设计等效串联电阻 (ESR) 值来选择阻尼电容器 CV1 和 CV2,可减少由于分别连接到 V1 和 V2 的串联导线电感而引起的谐振。 选择降压和升压调节回路补偿来优化带宽和稳定性。有关使用开关稳压器和控制器进行设计的更多信息,请参阅 Digi-Key 技术**:《选择高频开关稳压器时的设计取舍》、《了解开关稳压器控制回路响应》和《使用低 EMI 开关稳压器优化高效率电源设计》。 按照良好设计原则为开关稳压器设计选择好元器件之后,还需要选择一些元器件以满足双向 12/48 V 汽车应用的特殊要求。 例如,LT8228 的降压输出限流、升压输入限流和 V2 电流监测器分别通过电阻器 RSET2P、RSET2N 和 RMON2 来设置。接下来,选择 V1 电流检测电阻器 RSNS1(图中左上角)及其输入增益电阻器 RIN1,以优化能效和电流检测精度。 在降压和升压工作模式下,LT8228 可使用相同的电感器。在降压模式下,电感器电流为 V2 输出电流;在升压模式下,电感器电流为 V2 输入电流。两种模式下的电感器最大电流可以通过公式 1 和 2 来计算: 公式 1 和 2 其中: ƒ = 开关频率 L = 所选电感值 IV2P(LIM) = 降压模式 V2 输出限流 IV2N(LIM) = 升压模式 V2 输入限流 电感器峰值电流应比降压和升压模式下电感器最大电流中的较大值大至少 20% 到 30%。这样可确保在任何一种工作模式下,最大平均电流调节均不受电感器峰值限流的影响。电感器电流使用 RSNS2 来检测,该电阻器与电感器串联。通常,当 ICSA2 达到 72.5 µA 时,将检测到电感器峰值电流 IL(PEAK)。 高 RSNS2(右上角)值可提高电流检测精度,而低 RSNS2 值则可提高能效。因此,设计人员选择 RSNS2 值时应采用的原则是,CSA2 的输入型补偿电压不会影响电流检测精度,同时能够最大限度地减小电感器上的功率损耗。建议电感器峰值电流下 RSNS2 的电压为 50 至 200 mV。 然后,设计人员应根据以下公式选择 RIN2 来设置电感器峰值限流: 公式 3 设置了电感器峰值限流后,再分别通过电阻器 RSET1N、RSET1P 和 RMON1 设置升压输出限流、降压输入限流和 V1 电流监测器。选择与 RSET 电阻器并联的电容器,以将限流设置为电流检测电阻器的平均电流。 通过选择连接到 FB1 和 FB2 引脚的电阻分压器,设置 V1D(升压模式下的稳压输出)和 V2D(降压模式下的稳压输出)的稳压和过压阈值。通过选择连接到 UV1 和 UV2 引脚的电阻分压器,设置 V1 和 V2 的欠压阈值。 另外,LT8228 的外部电路还需要六个功率 MOSFET(图 4)。这些器件应根据能效和击穿电压考量因素来进行选择。配套的肖特基二极管(D2 和 D3)是可选的,应根据能效考量因素进行选择。
图 4:LT8228 需要六个外部 N 沟道 MOSFET:V1 保护 MOSFET M1A 和 M1B、V2 保护 MOSFET M4A 和 M4B、上开关 MOSFET M2 和下开关 MOSFET M3。(图片来源:Linear Technology) 当 LT8228 以降压模式工作时,MOSFET M2 是主开关,MOSFET M3 是同步开关;V1D(由升压稳压器调节的节点,位于图 3 中 DG1 控制器的左上方)是输入电压,V2D(由降压转换器调节的节点,位于图 3 的右上方,紧靠降压 MOSFET 的左侧)是降压调节的输出电压。在升压模式下,情况相反,M3 充当主开关,M2 充当同步开关,V2D 作为输入电压,V1D 作为输出电压。 在开关关断期间,两个 MOSFET 开关 M2 和 M3 的漏极和源极之间都将承受最大输入电压(加上开关节点上的任何额外瞬时振荡)。因此,在高压应用中选择开关 MOSFET 时,最重要的参数就是击穿电压 (BVDSS)。 此外,设计人员还必须考虑 MOSFET 的功率耗散。功耗过大会影响系统能效,并可能导致 MOSFET 过热和损坏。确定功率耗散的关键参数是导通电阻 (RDS(ON))、输入电压、输出电压、最大输出电流和米勒电容 (CMILLER)。
|