打印
[应用相关]

【STM32垂直应用挑战第六周+STM32Cube.AI工具包学习】

[复制链接]
3687|0
手机看帖
扫描二维码
随时随地手机跟帖
跳转到指定楼层
楼主
caizhiwei|  楼主 | 2020-12-23 08:48 | 只看该作者 |只看大图 回帖奖励 |倒序浏览 |阅读模式
在ST主页出了这么一个消息:
TMicroelectronics Drives AI to Edge and Node Embedded Devices with STM32 Neural-Network Developer Toolbox
大概意思是:ST利用STM32神经网络开发工具包将AI(Artificial Intelligence人工智能)驱动到边缘和节点嵌入式设备。
ST在STM32CubeMX工具中引入STM32Cube.AI工具包,大家可以在STM32CubeMX(V5.0.1或更高版本)工具中在线更新:

通过SM32Cube.AI,开发人员现在可以将预先训练的神经网络转换为C代码,该代码可以调用在STM32 MCU上运行的优化库中的函数。
ST的新型神经网络开发工具包STM32Cube.AI,正在将AI引入微控制器供电的智能设备,位于节点边缘,以及物联网,智能建筑,工业和医疗应用中的深度嵌入式设备。
主要特点:
  • 从预先训练的神经网络模型生成STM32优化的库。
  • 支持各种深度学习框架,如Keras,Caffe,ConvnetJS和Lasagne.
  • 通过STM32Cube™集成,可轻松实现不同STM32微控制器系列的便携性。
  • 免费,用户友好的许可条款。
更多相关信息,请参看:
https://www.st.com/en/embedded-software/x-cube-ai.html?icmp=tt9145_gl_pron_dec2018
(以下内容是通过电堂视频教学学习的内容:)
AI神经网络解决方案:
使用STM32Cube.AI简化了人工神经网络映射;
可与流行的深度学习培训工具互操作;
兼容许多IDE和编译器;
传感器和RTOS无关;
允许多个人工神经网络在单个STM32 MCU上运行;
完全支持超低功耗STM32 MCU;
提高您的工作效率;
利用Deep Learning的强大功能提高信号处理性能并提高STM32应用程序的生产率。创建人工神经网络并将其映射到STM32(自动生成的优化代码),而不是构建手工制作的代码。
使用STM32CUBE.AI部署神经网络的5个步骤:
1.捕获数据
2.清理,标记数据和构建ANN(人工神经网络)拓扑
3.训练ANN模型
4.将ANN转换为STM32 MCU的优化代码
5.使用经过培训的ANN处理和分析新数据
相关资源:
多信息,请参看:
https://www.st.com/content/st_com/en/stm32-ann.html??icmp=tt9145_gl_pron_dec2018#stm32-sann-stepnncontainer
最后,现在人工智能这么火,我预测这个工具包应该会逐渐火起来!
fp-ai-sensing1.pdf (1.15 MB)





使用特权

评论回复
发新帖 我要提问
您需要登录后才可以回帖 登录 | 注册

本版积分规则

100

主题

857

帖子

14

粉丝