代码里面 KG 的卡尔曼增益 好像和 输入数据 没有关系,这样不能通过数据 修正增益,那么好像效果,不符合 卡尔曼 滤波的思想吧
p_mid=p_last+Q; //p_mid=p(k|k-1),p_last=p(k-1|k-1),Q=噪声
kg=p_mid/(p_mid+R); //kg为kalman filter,R为噪声
kg 和 ResrcData 产生不了关系
- /*-------------------------------------------------------------------------------------------------------------*/
- /*
- Q:过程噪声,Q增大,动态响应变快,收敛稳定性变坏
- R:测量噪声,R增大,动态响应变慢,收敛稳定性变好
- */
- double KalmanFilter(const double ResrcData,double ProcessNiose_Q,double MeasureNoise_R,double InitialPrediction)
- {
- double R = MeasureNoise_R;
- double Q = ProcessNiose_Q;
- static double x_last;
- double x_mid = x_last;
- double x_now;
- static double p_last;
- double p_mid ;
- double p_now;
- double kg;
- x_mid=x_last; //x_last=x(k-1|k-1),x_mid=x(k|k-1)
- p_mid=p_last+Q; //p_mid=p(k|k-1),p_last=p(k-1|k-1),Q=噪声
- kg=p_mid/(p_mid+R); //kg为kalman filter,R为噪声
- x_now=x_mid+kg*(<font color="#ff0000">ResrcData</font>-x_mid);//估计出的最优值
-
- p_now=(1-kg)*p_mid;//最优值对应的covariance
- p_last = p_now; //更新covariance值
- x_last = x_now; //更新系统状态值
- return x_now;
- }
- /*-------------------------------------------------------------------------------------------------------------*/
|