/**************************************************************************//**
* [url=home.php?mod=space&uid=288409]@file[/url] main.c
* [url=home.php?mod=space&uid=895143]@version[/url] V3.00
* [url=home.php?mod=space&uid=247401]@brief[/url] Demonstrate how to trigger ADC by PWM.
*
* SPDX-License-Identifier: Apache-2.0
* [url=home.php?mod=space&uid=17282]@CopyRight[/url] (C) 2018 Nuvoton Technology Corp. All rights reserved.
******************************************************************************/
#include <stdio.h>
#include "NuMicro.h"
/*---------------------------------------------------------------------------------------------------------*/
/* Define global variables and constants */
/*---------------------------------------------------------------------------------------------------------*/
volatile uint32_t g_u32AdcIntFlag, g_u32COVNUMFlag = 0;
void SYS_Init(void)
{
/* Unlock protected registers */
SYS_UnlockReg();
/* Enable HIRC */
CLK_EnableXtalRC(CLK_PWRCTL_HIRCEN_Msk);
/* Waiting for HIRC clock ready */
CLK_WaitClockReady(CLK_STATUS_HIRCSTB_Msk);
/* Switch HCLK clock source to HIRC */
CLK_SetHCLK(CLK_CLKSEL0_HCLKSEL_HIRC, CLK_CLKDIV0_HCLK(1));
/* Set both PCLK0 and PCLK1 as HCLK/2 */
CLK->PCLKDIV = (CLK_PCLKDIV_APB0DIV_DIV2 | CLK_PCLKDIV_APB1DIV_DIV2);
/* Switch UART0 clock source to HIRC */
CLK_SetModuleClock(UART0_MODULE, CLK_CLKSEL1_UART0SEL_HIRC, CLK_CLKDIV0_UART0(1));
/* Enable UART peripheral clock */
CLK_EnableModuleClock(UART0_MODULE);
/* Enable PWM0 module clock */
CLK_EnableModuleClock(PWM0_MODULE);
/* Select PWM0 module clock source as PCLK0 */
CLK_SetModuleClock(PWM0_MODULE, CLK_CLKSEL2_PWM0SEL_PCLK0, 0);
/* Enable ADC module clock */
CLK_EnableModuleClock(ADC_MODULE);
/* ADC clock source is PCLK1, set divider to 1 */
CLK_SetModuleClock(ADC_MODULE, CLK_CLKSEL2_ADCSEL_PCLK1, CLK_CLKDIV0_ADC(1));
/* Update System Core Clock */
/* User can use SystemCoreClockUpdate() to calculate PllClock, SystemCoreClock and CycylesPerUs automatically. */
SystemCoreClockUpdate();
/*----------------------------------------------------------------------*/
/* Init I/O Multi-function */
/*----------------------------------------------------------------------*/
/* Set GPB multi-function pins for UART0 RXD and TXD */
SYS->GPB_MFPH = (SYS->GPB_MFPH & ~(SYS_GPB_MFPH_PB12MFP_Msk | SYS_GPB_MFPH_PB13MFP_Msk)) |
(SYS_GPB_MFPH_PB12MFP_UART0_RXD | SYS_GPB_MFPH_PB13MFP_UART0_TXD);
/* Set PB.2 - PB.3 to input mode */
GPIO_SetMode(PB, BIT2|BIT3, GPIO_MODE_INPUT);
/* Configure the PB.2 - PB.3 ADC analog input pins. */
SYS->GPB_MFPL = (SYS->GPB_MFPL & ~(SYS_GPB_MFPL_PB2MFP_Msk | SYS_GPB_MFPL_PB3MFP_Msk)) |
(SYS_GPB_MFPL_PB2MFP_ADC0_CH2 | SYS_GPB_MFPL_PB3MFP_ADC0_CH3);
/* Disable the PB.2 - PB.3 digital input path to avoid the leakage current. */
GPIO_DISABLE_DIGITAL_PATH(PB, BIT2|BIT3);
/* Set PA multi-function pins for PWM0 Channel 0 */
SYS->GPA_MFPL = (SYS->GPA_MFPL & (~SYS_GPA_MFPL_PA0MFP_Msk)) |
(SYS_GPA_MFPL_PA5MFP_PWM0_CH0);
/* Lock protected registers */
SYS_LockReg();
}
void PWM0_Init()
{
/* Set PWM0 timer clock prescaler */
PWM_SET_PRESCALER(PWM0, 0, 10);
/* Set up counter type */
PWM0->CTL1 &= ~PWM_CTL1_CNTTYPE0_Msk;
/* Set PWM0 timer duty */
PWM_SET_CMR(PWM0, 0, 1000);
/* Set PWM0 timer period */
PWM_SET_CNR(PWM0, 0, 2000);
/* PWM period point trigger ADC enable */
PWM_EnableADCTrigger(PWM0, 0, PWM_TRIGGER_ADC_EVEN_PERIOD_POINT);
/* Set output level at zero, compare up, period(center) and compare down of specified channel */
PWM_SET_OUTPUT_LEVEL(PWM0, BIT0, PWM_OUTPUT_HIGH, PWM_OUTPUT_LOW, PWM_OUTPUT_NOTHING, PWM_OUTPUT_NOTHING);
/* Enable output of PWM0 channel 0 */
PWM_EnableOutput(PWM0, BIT0);
}
void ADC_FunctionTest()
{
uint8_t u8Option;
int32_t i32ConversionData[6] = {0};
printf("\n");
printf("+----------------------------------------------------------------------+\n");
printf("| ADC trigger by PWM test |\n");
printf("+----------------------------------------------------------------------+\n");
printf("\nIn this test, software will get 6 conversion result from the specified channel.\n");
/* Enable ADC converter */
ADC_POWER_ON(ADC);
while(1)
{
printf("Select input mode:\n");
printf(" [1] Single end input (channel 2 only)\n");
printf(" [2] Differential input (channel pair 1 only)\n");
printf(" Other keys: exit single mode test\n");
u8Option = getchar();
if(u8Option == '1')
{
/* Set input mode as single-end, Single mode, and select channel 2 */
ADC_Open(ADC, ADC_ADCR_DIFFEN_SINGLE_END, ADC_ADCR_ADMD_SINGLE, BIT2);
/* Configure the sample module and enable PWM0 trigger source */
ADC_EnableHWTrigger(ADC, ADC_ADCR_TRGS_PWM, 0);
/* Clear the A/D interrupt flag for safe */
ADC_CLR_INT_FLAG(ADC, ADC_ADF_INT);
/* Enable the sample module interrupt */
ADC_ENABLE_INT(ADC, ADC_ADF_INT); /* Enable sample module A/D interrupt. */
NVIC_EnableIRQ(ADC_IRQn);
printf("Conversion result of channel 2:\n");
/* Reset the ADC indicator and enable PWM0 channel 0 counter */
g_u32AdcIntFlag = 0;
g_u32COVNUMFlag = 0;
PWM_Start(PWM0, PWM_CH_0_MASK); /* PWM0 channel 0 counter start running. */
while(1)
{
/* Wait ADC interrupt (g_u32AdcIntFlag will be set at IRQ_Handler function) */
while(g_u32AdcIntFlag == 0);
/* Reset the ADC interrupt indicator */
g_u32AdcIntFlag = 0;
/* Get the conversion result of the ADC channel 2 */
i32ConversionData[g_u32COVNUMFlag - 1] = ADC_GET_CONVERSION_DATA(ADC, 2);
if(g_u32COVNUMFlag >= 6)
break;
}
/* Disable PWM0 channel 0 counter */
PWM_ForceStop(PWM0, BIT0); /* PWM0 counter stop running. */
for(g_u32COVNUMFlag = 0; (g_u32COVNUMFlag) < 6; g_u32COVNUMFlag++)
printf(" 0x%X (%d)\n", i32ConversionData[g_u32COVNUMFlag], i32ConversionData[g_u32COVNUMFlag]);
}
else if(u8Option == '2')
{
/* Set input mode as differential, Single mode, and select channel 2 */
ADC_Open(ADC, ADC_ADCR_DIFFEN_DIFFERENTIAL, ADC_ADCR_ADMD_SINGLE, BIT2);
/* Configure the sample module and enable PWM0 trigger source */
ADC_EnableHWTrigger(ADC, ADC_ADCR_TRGS_PWM, 0);
/* Clear the A/D interrupt flag for safe */
ADC_CLR_INT_FLAG(ADC, ADC_ADF_INT);
/* Enable the sample module interrupt */
ADC_ENABLE_INT(ADC, ADC_ADF_INT); /* Enable sample module A/D interrupt. */
NVIC_EnableIRQ(ADC_IRQn);
printf("Conversion result of channel 2:\n");
/* Reset the ADC indicator and enable PWM0 channel 0 counter */
g_u32AdcIntFlag = 0;
g_u32COVNUMFlag = 0;
PWM_Start(PWM0, PWM_CH_0_MASK); /* PWM0 channel 0 counter start running. */
while(1)
{
/* Wait ADC interrupt (g_u32AdcIntFlag will be set at IRQ_Handler function) */
while(g_u32AdcIntFlag == 0);
/* Reset the ADC interrupt indicator */
g_u32AdcIntFlag = 0;
/* Get the conversion result of the ADC channel 2 */
i32ConversionData[g_u32COVNUMFlag - 1] = ADC_GET_CONVERSION_DATA(ADC, 2);
if(g_u32COVNUMFlag >= 6)
break;
}
/* Disable PWM0 channel 0 counter */
PWM_ForceStop(PWM0, BIT0); /* PWM0 counter stop running. */
for(g_u32COVNUMFlag = 0; (g_u32COVNUMFlag) < 6; g_u32COVNUMFlag++)
printf(" 0x%X (%d)\n", i32ConversionData[g_u32COVNUMFlag], i32ConversionData[g_u32COVNUMFlag]);
}
else
return ;
}
}
void ADC_IRQHandler(void)
{
ADC_CLR_INT_FLAG(ADC, ADC_ADF_INT); /* Clear the A/D interrupt flag */
g_u32AdcIntFlag = 1;
g_u32COVNUMFlag++;
}
/*----------------------------------------------------------------------*/
/* Init UART0 */
/*----------------------------------------------------------------------*/
void UART0_Init(void)
{
/* Reset UART0 */
SYS_ResetModule(UART0_RST);
/* Configure UART0 and set UART0 baud rate */
UART_Open(UART0, 115200);
}
int32_t main(void)
{
/* Init System, IP clock and multi-function I/O. */
SYS_Init();
/* Init UART0 for printf */
UART0_Init();
/* Init PWM for ADC */
PWM0_Init();
printf("\nSystem clock rate: %d Hz", SystemCoreClock);
/* ADC function test */
ADC_FunctionTest();
/* Disable ADC IP clock */
CLK_DisableModuleClock(ADC_MODULE);
/* Disable PWM0 IP clock */
CLK_DisableModuleClock(PWM0_MODULE);
/* Disable External Interrupt */
NVIC_DisableIRQ(ADC_IRQn);
printf("Exit ADC sample code\n");
while(1);
}