本帖最后由 blust5 于 2023-2-22 15:57 编辑
今天我们来聊一下激光器。什么是激光器呢?
激光器就是能发射激光的装置。1954年制成了第一台微波量子放大器,获得了高度相干的微波束。1958年A.L.肖洛和C.H.汤斯把微波量子放大器原理推广应用到光频范围,1960年T.H.梅曼等人制成了第一台红宝石激光器。1961年A.贾文等人制成了氦氖激光器。1962年R.N.霍耳等人创制了砷化镓半导体激光器。以后,激光器的种类就越来越多。 激光器是怎么产生激光的呢?激光器大致可以分为三个部分。 1、工作物质:激光器的核心,只有能实现能级跃迁的物质才能作为激光器的工作物质。 2、激励能源:它的作用是给工作物质以能量,将原子由低能级激发到高能级的外界能量。通常可以有光能源、热能源、电能源、化学能源等。 3、光学共振腔:作用一是使工作物质的受激辐射连续进行;二是不断给光子加速;三是限制激光输出的方向。最简单的光学共振腔是由放置在氦氖激光器两端的两个相互平行的反射镜组成。当一些氖原子在实现了粒子数反转的两能级间发生跃迁,辐射出平行于激光器方向的光子时,这些光子将在两反射镜之间来回反射,于是就不断地引起受激辐射,很快地就产生出相当强的激光。
激光器都有哪些种类呢? 其实我们小时候玩过的那些激光笔,以及做PPT演示时用来指示的激光笔,也是激光器。 按照发光介质分类,激光器主要可分为固体、气体、液体(染料)、半导体、光纤等类型。 固体激光器(Solid state laser)一般体积小而坚固,脉冲辐射功率较高,应用范围较广泛。如:Nd:YAG激光器。Nd(钕)是一种稀土族元素,YAG代表钇铝石榴石,晶体结构与红宝石相似。还有Tm:YAG,Ho:YAG,Ho:YAG等等。上面说到的激光笔,大部分都是固体激光器。 半导体激光器(Semiconductor laser)体积小、重量轻、寿命长、结构简单,特别适于在飞机、军舰、车辆和宇宙飞船上使用。半导体激光器可以通过外加的电场、磁场、温度、压力等改变激光的波长,能将电能直接转换为激光能,所以发展迅速。上面提到的激光笔也有一部分是半导体激光器。 气体激光器(Gas laser)是其中通过气体释放电流以产生相干光的激光器。单色性和相干性较好,激光波长可达数千种,应用广泛。气体激光器结构简单、造价低廉、操作方便。在工农业、医学、精密测量、全息技术等方面应用广泛。气体激光器有电能、热能、化学能、光能、核能等多种激励方式。 液体染料为工作物质的染料激光器(Dye laser)于1966年问世,广泛应用于各种科学研究领域。现在已发现的能产生激光的染料,大约500种左右。这些染料可以溶于酒精、苯、丙酮、水或其他溶液,所以染料激光器也称为“液体激光器”。它们还可以包含在有机塑料中以固态出现,或升华为蒸汽,以气态形式出现。染料激光器的突出特点是波长连续可调。染料激光器种类繁多,价格低廉,效率高,输出功率可与气体和固体激光器相媲美,应用于分光光谱、光化学、医疗和农业。 化学激光器(Chemical Laser)有些化学反应产生足够多的高能原子,就可以释放出大能量,可用来产生激光作用。这主要是武器应用。比如氟化氢激光器能够提供兆瓦范围内的连续输出功率。 自由电子激光器(Free electron laser)这类激光器比其他类型更适于产生很大功率的辐射。它的工作机制与众不同,它从加速器中获得几千万伏高能调整电子束,经周期磁场,形成不同能态的能级,产生受激辐射。 准分子激光器(Excimer laser,其实也属于气体激光之一)是一种紫外气态激光,处于激发态的惰性气体和另一种气体(惰性气体或卤素)结合的混合气体形成的分子,向其基态跃迁时发射所产生的激光,称为准分子激光。准分子激光属于低能量激光,无热效应,是方向性强、波长纯度高、输出功率大的脉冲激光,光子能量波长范围为157-353纳米,脉冲时间为几十纳秒,属于紫外光。最常见的波长有157 nm、193 nm、248 nm、308 nm、351-353 nm。 光纤激光器(Fiber laser)利用光纤中的增益介质(稀土元素)提供光信号的放大。光纤激光器有单端泵浦和双端泵浦两种,后者的输出功率可以达到更高。还在研发中的相干合成技术可以进一步扩展输出功率。
从激光连续性来分的话,有连续激光、脉冲激光,脉冲激光还可分为较长脉冲激光和超短脉冲激光(比如飞秒激光甚至阿秒激光)。 连续激光器有稳定的工作状态,即是稳态。连续激光器中各能级的粒子数及腔内辐射场均具有稳定分布。连续激光器工作物质的激励和相应的激光输出,可以在一段较长的时间范围内以连续方式持续进行,比如以连续光源激励的固体激光器和以连续电激励方式工作的气体激光器及半导体激光器。 脉冲激光器是单个激光脉冲宽度小于0.25秒、每间隔一定时间才工作一次的激光器。具有较大输出功率;适合于激光打标、切割、测距等。
说完了激光器的分类,我们来说一下激光器的漏电流。一般漏电流这个特性是针对半导体激光器来说的。 半导体激光器又称激光二极管,是用半导体材料作为工作物质的激光器。由于物质结构上的差异,不同种类产生激光的具体过程比较特殊。常用工作物质有砷化镓(GaAs)、硫化镉(CdS)、磷化铟(InP)、硫化锌(ZnS)等。激励方式有电注入、电子束激励和光泵浦三种形式。 半导体激光器件,可分为同质结、单异质结、双异质结等几种。同质结激光器和单异质结激光器在室温时多为脉冲器件,而双异质结激光器室温时可实现连续工作。 半导体二极管激光器是最实用最重要的一类激光器。它体积小、寿命长,并可采用简单的注入电流的方式来泵浦,其工作电压和电流与集成电路兼容,因而可与之单片集成。并且还可以用高达GHz的频率直接进行电流调制以获得高速调制的激光输出。由于这些优点,半导体二极管激光器在激光通信、光存储、光陀螺、激光打印、测距以及雷达等方面得到了广泛的应用。 既然是激光二极管,那么它的漏电流应该就和二极管的漏电流相似。那么二极管的漏电流是怎么产生的呢? 理想情况下,二极管在正向导通的时候,没有压降,没有损耗,而在反向偏置的时候,是完全截止的。但是真实情况做不到这么理想,二极管在反向截止的时候,并不是完全理想的截止。在承受反压的时候,会有些微小的电流从阴极漏到阳极。这个电流通常很小,而且反压越高,漏电流越大,温度越高,漏电流越大。大的漏电流会带来较大的损耗,特别在高压应用场合。 这个漏电流是怎么产生的呢?从半导体材料内部结构看,是外加反向电压在PN结势垒区所产生的反向电场E大于势垒区扩散电荷形成的电场E。,导致了通过PN结的反向漏电电流。势垒区的薄厚,以及所加反向电压的大小共同决定了漏电电流的大小。
那么半导体激光器作为二极管的一种,除了以上原因之外,还有没有不同之处呢? 在对半导体二极管两端施加正向偏压时,电子从N流向有源区,但是也有一部分电子会有足够的能量从有源区溢出并流向P区,这些流到P的电流,就叫漏电流。漏电流可分为两个部分,一部分如上说的,另一部分是拥有足够的热能从而超过电位势垒。另一部分是由于P能内部本身有少量电子渗透或漂移到P接触区域,形成漏电流。漏电流对发光没有贡献,只会使得器件内部量子效率减少。同时对温度十分敏感,漏电流会随着温度上升迅速增加。 而且短波长的激光器比长波长的激光器更容易漏电。例如短波长的磷化铝镓铟。 如上图,波长690nm的磷化铝镓铟芯片导电带能隙差400meV,但是波长650nm的磷化铝镓铟相差只有320meV,电子更容易溢出。减少短波长磷化铝镓铟漏电的几个方法:1)提高P包覆层的掺杂浓度。增加导电能隙差值,增加电子越过电位的难度。2)增加量子阱的个数,使得可容纳载子变多而减少电流溢出;随着量子阱的增加,必须要注入更多的电流产生laser,因而临界电流也会增加。
以上就是我关于激光器漏电流的了解,欢迎大家讨论补充。
|