本帖最后由 keer_zu 于 2023-8-1 16:06 编辑
摘要
三维车道检测是自动驾驶领域发展迅速的课题,对车辆的路径选择起着至关重要的作用。以往的作品由于空间变换复杂,3D车道的表现不灵活,在实用性上存在一定的问题。面对这些问题,我们的工作提出了一种高效、鲁棒的单目3D车道检测方法BEV-LaneDet,主要有三个贡献。首先,我们引入了虚拟摄像机,它统一了安装在不同车辆上的摄像机的内外参数,以保证摄像机之间空间关系的一致性。由于统一的视觉空间,可以有效地促进学习过程。其次,我们提出了一个简单而有效的三维车道表示,称为关键点表示。该模块更适合表示复杂多样的三维车道结构。最后,提出了一种轻量化、芯片友好的空间转换模块——空间转换金字塔,将多尺度前视特征转换为BEV特征。实验结果表明,我们的工作在F-Score方面优于最先进的方法,在OpenLane数据集上高出10.6%,在Apollo 3D合成数据集上高出5.9%,速度为185 FPS。
|