打印
[综合信息]

嵌入式裸机设计思想——时间片轮裸机开发架构+状态机+定时器调度机制

[复制链接]
3899|7
手机看帖
扫描二维码
随时随地手机跟帖
跳转到指定楼层
楼主
tpgf|  楼主 | 2023-9-19 10:48 | 只看该作者 |只看大图 回帖奖励 |倒序浏览 |阅读模式
状态机
(1)状态机其实很好理解,说白了就是一个switch()语句。根据情况将一个任务拆分成多种。例如,在我的代码中,有一个OLED显示程序。因为OLED显示是非常浪费时间的,为了不因为一个这样的程序,而影响到其他任务的执行,我们可以将OLED显示任务分成多个,依次显示。

static void Display(void)
{
        static uint8_t gray_display_state=2;
        switch(gray_display_state)
        {
                case 2:gray_display_state++;break;
                case 3:gray_display_state++;break;
                case 4:gray_display_state++;break;
                case 5:gray_display_state++;break;
                case 6:gray_display_state++;break;
                default:gray_display_state = 2;
        }
}



(2)上面那种其实是最简单的形式,整个状态是呈现圆圈型状的状态机。但是,我们有时候会遇到一些情况,他的状态有很多种任务流程,例如洗衣机,有待机状态,运行状态,运行结束之后的自动停止进入待机状态,手动关停状态,因一些异常情况引起的停止状态。因此,状态机也是一个很好的思路。



enum Washer_State_List
{
        off,            //待机状态
        run,            //运行机状态
        automatic_stop, //自动停止
        hand_stop,      //手动关停状态
        malfunction     //故障
};
static void washer_control(void)
{
        static uint8_t washer_state=2;
        switch(washer_state)
        {
                case off:
                        LCD_show("stop");
                        if(operation_key == true) washer_state = run;
                        break;
                case run:
                        LCD_show("runing");
                        //如果手动关停
                        if(hand_stop_key == true) washer_state = hand_stop;
                        //如果计时结束
                        if(time-- == over) washer_state = automatic_stop;
                        //识别到了异常
                        if(err == true) goto err;
                        break;
                case automatic_stop:
                        //显示洗衣机已经关闭
                        LCD_show("Finished washing");
                        washer_state = off;
                        break;
                case hand_stop:
                        //关闭洗衣机
                        washer_stop();
                        //显示洗衣机已经手动关闭
                        LCD_show("Manually closed");
                        washer_state = off;
                        break;
                case malfunction:
                        err :
                                //关闭洗衣机
                                washer_stop();
                                //报警
                                alarm_system(on);
                                //显示机器故障
                                LCD_show("Machine failure");
                                washer_state = off;
                        break;
                default:gray_display_state = 2;
        }
}



时间片轮裸机开发架构
(1)这个机制名字很多,有些人叫做软定时器,有些叫做Easy51RTOS,具体叫做什么,我们就不深究了。
(2)新手入门MCU裸机开发,肯定都是一股脑的采用while(1)死循环,然后一直跑。如果是开发稍微复杂一点点的任务时候,你就会深刻的感受到,这样写究竟有多垃圾。
(3)一股脑的while(1)死循环,然后里面堆一大堆的任务,这样做有一下几种问题:
<1>在后续的维护中非常复杂。想找到目标任务找起来很费力。
<2>并不是所有的任务都需要频繁执行,例如OLED显示,就是一个非常费时间,但是又没有必要一直保持刷新的任务。他只要能够做到50ms刷新一次就能够做动画了。因此这种任务放在while(1)无脑执行无疑是对CPU的浪费,导致真正需要CPU执行的任务没有有效的照顾。
(4)为了优化上面这些问题,大佬们于是提出了基于时间片的裸机开发架构,我们可以利用一个定时器提供心跳,不断的进行计数。然后当定时时间一到,那么就可以开始执行相应的任务了。
(5)时间片轮转的裸机架构看起来是不是很完美?NO,不是的,他确实比无脑while(1)优秀很多,但是我们需要知道,每个任务的执行时间不能超出一次时间片。(例如我们上面的滴答定时器是2ms定时,所以时间片是2ms)
(6)因此,我们需要大概估计每个任务的执行时间,这里有很两种做法:
<1>利用滴答定时器,当任务开始记录当前时间,任务结束记录当前时间然后两者相减。
<2>进入函数,让某个引脚为高电平,函数结束让他为低电平,然后用示波器捕捉这个引脚的上升沿和下降沿。(这个方法感觉有点麻烦,我是使用的第一个)
(7)时间片轮裸机开发框架机制确实非常好,但是毕竟还是软件实现的任务调度,实时性只能说相对于只有一个while(1)好,对于其他的机制还是不太行。所以我个人还是建议,只有不重要的任务,对整个项目影响不大的任务可以放在这个框架里面,例如OLED显示,按键扫描。

/*------------------------------------------------*/
/*------------------- systick.c ------------------*/
/*------------------------------------------------*/
/* 滴答定时器中断,每2毫秒进入一次,count表示过了多少个2毫秒,最多计时2366多个小时*/
static void SycTickHandler(void) {
        counter++;
        task_remarks();    //用于任务调度,此任务执行时间在5us之内
}
/*------------------------------------------------*/
/*-------------------- Task.h --------------------*/
/*------------------------------------------------*/
#ifndef     _Task__H
#define     _Task__H

// 任务结构
typedef struct
{
    uint8_t  run;                          // 程序运行标记:0:不运行,1:运行
    uint16_t timer;                        // 定时器,用于自减 单位:ms
    uint16_t itv_time;                     // 任务运行间隔时间 单位:ms
    void (*hook)(void);                    // 要运行的任务函数
} task_params_t;  

/*****    函数声明    *******/
void task_proc(void);     //任务执行处理
void task_remarks(void);  //任务标志位处理

#endif
/*------------------------------------------------*/
/*-------------------- Task.c --------------------*/
/*------------------------------------------------*/
static void SW_Scan(void);
// 任务清单
enum TASK_LIST {
        TASK1_SW_Scan,                    // 任务2,按键扫描
        TASK2_Display,                    // 任务3,OLED显示
       
        TASKS_NUM                         // 任务总数
};


//任务列表
static task_params_t s_task_params[TASKS_NUM] = {
        {0, Task_interval_ms(20),  Task_interval_ms(20),  SW_Scan },                  //任务2
        {0, Task_interval_ms(10),  Task_interval_ms(10),  Display },                  //任务3
};

/*
*********************************************************************************************************
*        函 数 名: task_proc
*        功能说明: 任务处理
*        形    参:无
*        返 回 值: 无
*********************************************************************************************************
*/
void task_proc(void)
{
    uint8_t i = 0;

        for(i = 0; i < TASKS_NUM; i++)
        {
                if(s_task_params.run)
                {
                        s_task_params.run = 0;
                        s_task_params.hook();
                        s_task_params.timer = s_task_params.itv_time;
                        break;
                }
        }
}


/* 作用 : 任务标志处理,单位是2ms,因为滴答定时器中断设置的是2ms
* 传入参数 : 无
* 返回参数 : 无
* 任务时间 : TASKS_NUM少于10的时候,运行速度在5ns之内
*/
void task_remarks(void)
{
        uint8_t i = 0;

        for(i = 0; i < TASKS_NUM; i++)
        {
                if(s_task_params.timer)
                {
                        s_task_params.timer--;

                        if(s_task_params.timer == 0)
                        {
                                s_task_params.run = 1;
                        }
                }
        }
}

/*****************************************************************************************/
/*************************************  按键扫描任务  *************************************/
/*****************************************************************************************/
static void SW_Scan(void)
{
        //...
}

/*****************************************************************************************/
/*********************************  灰度传感器时间显示任务  *******************************/
/*****************************************************************************************/
static void Display(void)
{
        static uint8_t gray_display_state=2;
        switch(gray_display_state)
        {
                case 2:
                        gray_display_state++;
                        //...
                        break;
                case 3:
                        gray_display_state++;
                        //...
                        break;
                case 4:
                        gray_display_state++;
                        //...               
                break;
                case 5:
                        gray_display_state++;
                        //...
                        break;
                case 6:
                        gray_display_state++;
                        //...
                        break;
                default:
                        gray_display_state = 2;
        }
}




定时器调度
(1)如果经验稍微丰富的同学会发现,上面的方法其实还是有问题的。例如有些任务我需要说执行就执行,如果是按照上面的方法来肯定是有一点点迟钝的。
(2)因此,我们可以采用定时器调度机制,例如我们的编码器数值读取和PID运算是优先级最高的任务,他的影响因素非常大,是我们的核心任务,所以他单独分配一个定时器。
(3)然后其他的一些任务,很相对来说,比较重要,但是却又不是核心任务。因此,我们可以将它存放在一个优先级低一级的定时器中。
(4)如果还有剩余的定时器,你可以自己根据需求进行任务分级,然后实现定时器调度功能。

//用于获取编码器的值
systime Time0_Delta;
void TIMER0A_Handler(void)
{
  get_systime(&Time0_Delta);
        cnt = 1;
        left_motor_speed_cmps =get_left_motor_speed();   //获取左边轮子实际速度值
        right_motor_speed_cmps=get_right_motor_speed();  //获取右边轮子实际速度值
        Motor_Foreward_Right(400);
        Motor_Foreward_Left(400);
  TimerIntClear(TIMER0_BASE,TIMER_TIMA_TIMEOUT);   //清除中断标志位
}
//普通任务
systime Time1_Delta;
void TIMER1A_Handler(void)
{
  get_systime(&Time1_Delta);
        cnt = 2;
        //任务列表
        //超声波数据解析
  US_100_Statemachine(UART5_BASE);  
        //MPU6050数据采集
        MPU6050_Read_Data(&WP_Sensor.gyro_raw,&WP_Sensor.accel_raw,&WP_Sensor.temperature);
  TimerIntClear(TIMER1_BASE,TIMER_TIMA_TIMEOUT);  //清除中断标志位
}



总结
(1)如果我们了解了如上机制,对于后续的操作系统学习,以及任务调度的理解会有一定的帮助。
(2)使用如上机制之后,也会很好的管理项目的各种任务,多裸机开发也很有利。
————————————————
版权声明:本文为CSDN博主「风正豪」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/qq_63922192/article/details/132746564

使用特权

评论回复
沙发
p8s| | 2023-10-10 19:19 | 只看该作者
非常棒

使用特权

评论回复
板凳
tpgf|  楼主 | 2023-10-11 19:00 | 只看该作者
后续还能多介绍一下软定时器是什么概念

使用特权

评论回复
地板
zljiu| | 2023-10-11 19:27 | 只看该作者
这种方式下必须要运行定时器吧

使用特权

评论回复
5
tfqi| | 2023-10-11 19:39 | 只看该作者
软定时不准 因为经常被其他中断所干扰

使用特权

评论回复
6
aoyi| | 2023-10-11 20:23 | 只看该作者
如果应用不那么复杂的话 基本上可以媲美跑系统了

使用特权

评论回复
7
nawu| | 2023-10-11 21:00 | 只看该作者
请问什么叫做定时器调度机制呀

使用特权

评论回复
8
gwsan| | 2023-10-11 21:31 | 只看该作者
所谓软定时器,不过借助硬定时器产生一个累积计数值

使用特权

评论回复
发新帖 我要提问
您需要登录后才可以回帖 登录 | 注册

本版积分规则

1931

主题

15611

帖子

11

粉丝