AT32F23呼吸流水灯
【工程简介】
传统都是用GPIO的高低电平来实现流水灯。这次用PWM来实现呼吸的流水灯。
【实现步骤】
新建freertos工程,复一份官方的freertos的工程,重命名,并打开工程,并确保编译通过。
打开雅特力的图形配置工具,配置板载的三个LED为PWM输出。
复制配置工具生成的代码到工程中。
代码为:
void wk_tmr4_init(void)
{
/* add user code begin tmr4_init 0 */
/* add user code end tmr4_init 0 */
gpio_init_type gpio_init_struct;
tmr_output_config_type tmr_output_struct;
gpio_default_para_init(&gpio_init_struct);
/* add user code begin tmr4_init 1 */
/* enable gpiod periph clock */
crm_periph_clock_enable(CRM_GPIOD_PERIPH_CLOCK, TRUE);
/* enable tmr4 periph clock */
crm_periph_clock_enable(CRM_TMR4_PERIPH_CLOCK, TRUE);
/* add user code end tmr4_init 1 */
/* configure the tmr4 CH2 pin */
gpio_init_struct.gpio_pins = GPIO_PINS_13;
gpio_init_struct.gpio_mode = GPIO_MODE_MUX;
gpio_init_struct.gpio_out_type = GPIO_OUTPUT_PUSH_PULL;
gpio_init_struct.gpio_pull = GPIO_PULL_NONE;
gpio_init_struct.gpio_drive_strength = GPIO_DRIVE_STRENGTH_MODERATE;
gpio_init(GPIOD, &gpio_init_struct);
gpio_pin_mux_config(GPIOD, GPIO_PINS_SOURCE13, GPIO_MUX_2);
/* configure the tmr4 CH3 pin */
gpio_init_struct.gpio_pins = GPIO_PINS_14;
gpio_init_struct.gpio_mode = GPIO_MODE_MUX;
gpio_init_struct.gpio_out_type = GPIO_OUTPUT_PUSH_PULL;
gpio_init_struct.gpio_pull = GPIO_PULL_NONE;
gpio_init_struct.gpio_drive_strength = GPIO_DRIVE_STRENGTH_MODERATE;
gpio_init(GPIOD, &gpio_init_struct);
gpio_pin_mux_config(GPIOD, GPIO_PINS_SOURCE14, GPIO_MUX_2);
/* configure the tmr4 CH4 pin */
gpio_init_struct.gpio_pins = GPIO_PINS_15;
gpio_init_struct.gpio_mode = GPIO_MODE_MUX;
gpio_init_struct.gpio_out_type = GPIO_OUTPUT_PUSH_PULL;
gpio_init_struct.gpio_pull = GPIO_PULL_NONE;
gpio_init_struct.gpio_drive_strength = GPIO_DRIVE_STRENGTH_MODERATE;
gpio_init(GPIOD, &gpio_init_struct);
gpio_pin_mux_config(GPIOD, GPIO_PINS_SOURCE15, GPIO_MUX_2);
/* configure counter settings */
tmr_base_init(TMR4, 14999, 0);
tmr_cnt_dir_set(TMR4, TMR_COUNT_UP);
tmr_clock_source_div_set(TMR4, TMR_CLOCK_DIV1);
tmr_period_buffer_enable(TMR4, FALSE);
/* configure primary mode settings */
tmr_sub_sync_mode_set(TMR4, FALSE);
tmr_primary_mode_select(TMR4, TMR_PRIMARY_SEL_RESET);
/* configure channel 2 output settings */
tmr_output_struct.oc_mode = TMR_OUTPUT_CONTROL_PWM_MODE_A;
tmr_output_struct.oc_output_state = TRUE;
tmr_output_struct.occ_output_state = FALSE;
tmr_output_struct.oc_polarity = TMR_OUTPUT_ACTIVE_LOW;
tmr_output_struct.occ_polarity = TMR_OUTPUT_ACTIVE_LOW;
tmr_output_struct.oc_idle_state = FALSE;
tmr_output_struct.occ_idle_state = FALSE;
tmr_output_channel_config(TMR4, TMR_SELECT_CHANNEL_2, &tmr_output_struct);
tmr_channel_value_set(TMR4, TMR_SELECT_CHANNEL_2, 0);
tmr_output_channel_buffer_enable(TMR4, TMR_SELECT_CHANNEL_2, FALSE);
tmr_output_channel_immediately_set(TMR4, TMR_SELECT_CHANNEL_2, FALSE);
/* configure channel 3 output settings */
tmr_output_struct.oc_mode = TMR_OUTPUT_CONTROL_PWM_MODE_A;
tmr_output_struct.oc_output_state = TRUE;
tmr_output_struct.occ_output_state = FALSE;
tmr_output_struct.oc_polarity = TMR_OUTPUT_ACTIVE_LOW;
tmr_output_struct.occ_polarity = TMR_OUTPUT_ACTIVE_LOW;
tmr_output_struct.oc_idle_state = FALSE;
tmr_output_struct.occ_idle_state = FALSE;
tmr_output_channel_config(TMR4, TMR_SELECT_CHANNEL_3, &tmr_output_struct);
tmr_channel_value_set(TMR4, TMR_SELECT_CHANNEL_3, 0);
tmr_output_channel_buffer_enable(TMR4, TMR_SELECT_CHANNEL_3, FALSE);
tmr_output_channel_immediately_set(TMR4, TMR_SELECT_CHANNEL_3, FALSE);
/* configure channel 4 output settings */
tmr_output_struct.oc_mode = TMR_OUTPUT_CONTROL_PWM_MODE_A;
tmr_output_struct.oc_output_state = TRUE;
tmr_output_struct.occ_output_state = FALSE;
tmr_output_struct.oc_polarity = TMR_OUTPUT_ACTIVE_LOW;
tmr_output_struct.occ_polarity = TMR_OUTPUT_ACTIVE_LOW;
tmr_output_struct.oc_idle_state = FALSE;
tmr_output_struct.occ_idle_state = FALSE;
tmr_output_channel_config(TMR4, TMR_SELECT_CHANNEL_4, &tmr_output_struct);
tmr_channel_value_set(TMR4, TMR_SELECT_CHANNEL_4, 0);
tmr_output_channel_buffer_enable(TMR4, TMR_SELECT_CHANNEL_4, FALSE);
tmr_output_channel_immediately_set(TMR4, TMR_SELECT_CHANNEL_4, FALSE);
tmr_counter_enable(TMR4, TRUE);
/* add user code begin tmr4_init 2 */
/* add user code end tmr4_init 2 */
}
创建三个任务,实现三个灯的交替呼吸。创建三个信量,实现三个PWM呼着灯的交替工作。
/* led2 task function */
void led2_task_function(void *pvParameters)
{
uint32_t tmr_channel_value;
uint8_t f;
BaseType_t xReturn = pdPASS;/* 定义一个创建信息返回值,默认为 pdPASS */
xSemaphoreGive( xBinarySemaphorePWM1 );//给出二值信号量
while(1)
{
//获取二值信号量 xSemaphore,没获取到则一直等待
xReturn = xSemaphoreTake(xBinarySemaphorePWM1,/* 二值信号量句柄 */
portMAX_DELAY); /* 等待时间 */
for(f=0; f<180; f++)
{
tmr_channel_value = (uint32_t)(14999*cos(f*3.14/180));
tmr_channel_value_set(TMR4, TMR_SELECT_CHANNEL_2, tmr_channel_value);
vTaskDelay(10);
}
tmr_channel_value_set(TMR4, TMR_SELECT_CHANNEL_2, tmr_channel_value);
xSemaphoreGive( xBinarySemaphorePWM2 );//给出二值信号量
}
}
/* led3 task function */
void led3_task_function(void *pvParameters)
{
BaseType_t xReturn = pdPASS;/* 定义一个创建信息返回值,默认为 pdPASS */
uint32_t tmr_channel_value;
uint8_t f;
while(1)
{
//获取二值信号量 xSemaphore,没获取到则一直等待
xReturn = xSemaphoreTake(xBinarySemaphorePWM2,/* 二值信号量句柄 */
portMAX_DELAY); /* 等待时间 */
for(f=0; f<180; f++)
{
tmr_channel_value = (uint32_t)(14999*sin(f*3.14/180));
tmr_channel_value_set(TMR4, TMR_SELECT_CHANNEL_3, tmr_channel_value);
vTaskDelay(10);
}
tmr_channel_value_set(TMR4, TMR_SELECT_CHANNEL_3, 0);
xSemaphoreGive( xBinarySemaphorePWM3 );//给出二值信号量
}
}
/* led3 task function */
void led4_task_function(void *pvParameters)
{
BaseType_t xReturn = pdPASS;/* 定义一个创建信息返回值,默认为 pdPASS */
uint32_t tmr_channel_value;
uint8_t f;
while(1)
{
//获取二值信号量 xSemaphore,没获取到则一直等待
xReturn = xSemaphoreTake(xBinarySemaphorePWM3,/* 二值信号量句柄 */
portMAX_DELAY); /* 等待时间 */
for(f=0; f<180; f++)
{
tmr_channel_value = (uint32_t)(14999*sin(f*3.14/180));
tmr_channel_value_set(TMR4, TMR_SELECT_CHANNEL_4, tmr_channel_value);
vTaskDelay(10);
}
tmr_channel_value_set(TMR4, TMR_SELECT_CHANNEL_4, 0);
xSemaphoreGive( xBinarySemaphorePWM1 );//给出二值信号量
}
}
在主程序中开始三个任务,任务中等待其的任务发出信号量,来实现工作。
/**
* @brief main function.
* @param none
* @retval none
*/
int main(void)
{
system_clock_config();
nvic_priority_group_config(NVIC_PRIORITY_GROUP_4);
wk_tmr4_init();
/* init usart1 */
uart_print_init(115200);
xBinarySemaphorePWM1 = xSemaphoreCreateBinary();//创建信号量
if (NULL != xBinarySemaphorePWM1)
{
printf("BinarySem_Handle 二值信号量1创建成功!\r\n");
}
xBinarySemaphorePWM2 = xSemaphoreCreateBinary();//创建信号量
if (NULL != xBinarySemaphorePWM2)
{
printf("BinarySem_Handle 二值信号量2创建成功!\r\n");
}
xBinarySemaphorePWM3 = xSemaphoreCreateBinary();//创建信号量
if (NULL != xBinarySemaphorePWM3)
{
printf("BinarySem_Handle 二值信号量3创建成功!\r\n");
}
/* enter critical */
taskENTER_CRITICAL();
/* create led2 task */
if(xTaskCreate((TaskFunction_t )led2_task_function,
(const char* )"LED2_task",
(uint16_t )512,
(void* )NULL,
(UBaseType_t )2,
(TaskHandle_t* )&led2_handler) != pdPASS)
{
printf("LED2 task could not be created as there was insufficient heap memory remaining.\r\n");
}
else
{
printf("LED2 task was created successfully.\r\n");
}
/* create led3 task */
if(xTaskCreate((TaskFunction_t )led3_task_function,
(const char* )"LED3_task",
(uint16_t )512,
(void* )NULL,
(UBaseType_t )2,
(TaskHandle_t* )&led3_handler) != pdPASS)
{
printf("LED3 task could not be created as there was insufficient heap memory remaining.\r\n");
}
else
{
printf("LED3 task was created successfully.\r\n");
}
/* create led3 task */
if(xTaskCreate((TaskFunction_t )led4_task_function,
(const char* )"LED4_task",
(uint16_t )512,
(void* )NULL,
(UBaseType_t )2,
(TaskHandle_t* )&led4_handler) != pdPASS)
{
printf("LED4 task could not be created as there was insufficient heap memory remaining.\r\n");
}
else
{
printf("LED4 task was created successfully.\r\n");
}
/* exit critical */
taskEXIT_CRITICAL();
/* start scheduler */
vTaskStartScheduler();
}
实现交替的呼吸流水灯:
【小结】
此工程实现了定时器的驱动,同时应用信号量来实现三个任务的交替运行呼吸灯。开程提供了FreeRTOS的移植、信号量的创建,任务之间的信号传递,实现了不一样的流水灯效果。
|
此文章已获得独家原创/原创奖标签,著作权归21ic所有,未经允许禁止转载。
|