/******************************************************************************
* [url=home.php?mod=space&uid=288409]@file[/url] main.c
* [url=home.php?mod=space&uid=895143]@version[/url] V1.00
* $Revision: 2 $
* $Date: 20/06/10 10:56a $
* [url=home.php?mod=space&uid=247401]@brief[/url] Implement SPI Master loop back transfer. This sample code needs to
* connect MISO_0 pin and MOSI_0 pin together. It will compare the
* received data with transmitted data.
*
* @note
* SPDX-License-Identifier: Apache-2.0
* Copyright (C) 2016 Nuvoton Technology Corp. All rights reserved.
*
*****************************************************************************/
#include <stdio.h>
#include "NuMicro.h"
#define TEST_CYCLE 0x1000
#define DATA_COUNT 64
#define SPI_CLK_FREQ 2000000
uint32_t g_au32SourceData[DATA_COUNT];
uint32_t g_au32DestinationData[DATA_COUNT];
/* Function prototype declaration */
void SYS_Init(void);
void SPI_Init(void);
/* ------------- */
/* Main function */
/* ------------- */
int main(void)
{
uint32_t u32DataCount, u32TestCycle, u32Err;
uint32_t u32TimeOutCount;
/* Unlock protected registers */
SYS_UnlockReg();
/* Init System, IP clock and multi-function I/O. */
SYS_Init();
/* Lock protected registers */
SYS_LockReg();
/* Configure UART0: 115200, 8-bit word, no parity bit, 1 stop bit. */
UART_Open(UART0, 115200);
/* Init SPI */
SPI_Init();
printf("\n\n");
printf("+--------------------------------------------------------------------+\n");
printf("| M030G SPI Driver Sample Code |\n");
printf("+--------------------------------------------------------------------+\n");
printf("\n");
printf("\nThis sample code demonstrates SPI0 self loop back data transfer.\n");
printf(" SPI0 configuration:\n");
printf(" Master mode; data width 32 bits.\n");
printf(" I/O connection:\n");
printf(" SPI0_MOSI(PA.0) <--> SPI0_MISO(PA.1) \n");
printf("\nSPI0 Loopback test ");
u32Err = 0;
for(u32TestCycle = 0; u32TestCycle < TEST_CYCLE; u32TestCycle++)
{
/* set the source data and clear the destination buffer */
for(u32DataCount = 0; u32DataCount < DATA_COUNT; u32DataCount++)
{
g_au32SourceData[u32DataCount] = u32DataCount;
g_au32DestinationData[u32DataCount] = 0;
}
u32DataCount = 0;
if((u32TestCycle & 0x1FF) == 0)
{
putchar('.');
}
while(1)
{
/* setup timeout */
u32TimeOutCount = SystemCoreClock;
/* Write to TX register */
SPI_WRITE_TX(SPI0, g_au32SourceData[u32DataCount]);
/* Check SPI0 busy status */
while(SPI_IS_BUSY(SPI0))
{
if(u32TimeOutCount == 0)
{
printf("\nSomething is wrong, please check if pin connection is correct. \n");
while(1);
}
u32TimeOutCount--;
}
/* Read received data */
g_au32DestinationData[u32DataCount] = SPI_READ_RX(SPI0);
u32DataCount++;
if(u32DataCount >= DATA_COUNT)
break;
}
/* Check the received data */
for(u32DataCount = 0; u32DataCount < DATA_COUNT; u32DataCount++)
{
if(g_au32DestinationData[u32DataCount] != g_au32SourceData[u32DataCount])
u32Err = 1;
}
if(u32Err)
break;
}
if(u32Err)
printf(" [FAIL]\n\n");
else
printf(" [PASS]\n\n");
/* Close SPI0 */
SPI_Close(SPI0);
while(1);
}
void SYS_Init(void)
{
/*---------------------------------------------------------------------------------------------------------*/
/* Init System Clock */
/*---------------------------------------------------------------------------------------------------------*/
/* Enable HIRC clock */
CLK_EnableXtalRC(CLK_PWRCTL_HIRCEN_Msk);
/* Waiting for HIRC clock ready */
CLK_WaitClockReady(CLK_STATUS_HIRCSTB_Msk);
/* Switch HCLK clock source to HIRC and HCLK source divide 1 */
CLK_SetHCLK(CLK_CLKSEL0_HCLKSEL_HIRC, CLK_CLKDIV0_HCLK(1));
/* Select HIRC as the clock source of UART0 */
CLK_SetModuleClock(UART0_MODULE, CLK_CLKSEL1_UART0SEL_HIRC, CLK_CLKDIV0_UART0(1));
/* Select PCLK1 as the clock source of SPI0 */
CLK_SetModuleClock(SPI0_MODULE, CLK_CLKSEL2_SPI0SEL_PCLK1, MODULE_NoMsk);
/* Enable UART peripheral clock */
CLK_EnableModuleClock(UART0_MODULE);
/* Enable SPI0 peripheral clock */
CLK_EnableModuleClock(SPI0_MODULE);
/*---------------------------------------------------------------------------------------------------------*/
/* Init I/O Multi-function */
/*---------------------------------------------------------------------------------------------------------*/
/* Set PB multi-function pins for UART0 RXD=PB.12 and TXD=PB.13 */
SYS->GPB_MFPH = (SYS->GPB_MFPH & ~(SYS_GPB_MFPH_PB12MFP_Msk | SYS_GPB_MFPH_PB13MFP_Msk)) |
(SYS_GPB_MFPH_PB12MFP_UART0_RXD | SYS_GPB_MFPH_PB13MFP_UART0_TXD);
/* Setup SPI0 multi-function pins */
/* PA.3 is SPI0_SS, PA.2 is SPI0_CLK,
PA.1 is SPI0_MISO, PA.0 is SPI0_MOSI*/
SYS->GPA_MFPL = (SYS->GPA_MFPL & ~(SYS_GPA_MFPL_PA3MFP_Msk |
SYS_GPA_MFPL_PA2MFP_Msk |
SYS_GPA_MFPL_PA1MFP_Msk |
SYS_GPA_MFPL_PA0MFP_Msk)) |
(SYS_GPA_MFPL_PA3MFP_SPI0_SS |
SYS_GPA_MFPL_PA2MFP_SPI0_CLK |
SYS_GPA_MFPL_PA1MFP_SPI0_MISO |
SYS_GPA_MFPL_PA0MFP_SPI0_MOSI);
/* Update System Core Clock */
/* User can use SystemCoreClockUpdate() to calculate SystemCoreClock and CyclesPerUs automatically. */
SystemCoreClockUpdate();
}
void SPI_Init(void)
{
/*---------------------------------------------------------------------------------------------------------*/
/* Init SPI */
/*---------------------------------------------------------------------------------------------------------*/
/* Configure as a master, clock idle low, 32-bit transaction, drive output on falling clock edge and latch input on rising edge. */
/* Set IP clock divider. SPI clock rate = 2MHz */
SPI_Open(SPI0, SPI_MASTER, SPI_MODE_0, 32, SPI_CLK_FREQ);
/* Enable the automatic hardware slave select function. Select the SS pin and configure as low-active. */
SPI_EnableAutoSS(SPI0, SPI_SS, SPI_SS_ACTIVE_LOW);
}
/*** (C) COPYRIGHT 2016 Nuvoton Technology Corp. ***/
|