对定时器2和5重新赋值后再启动定时器 pwm会在定时器启动后15秒左右才有输出,其余6个定时器的pwm输出正常工程使用CUBEMX创建
/ USER CODE BEGIN Header / /**
@file : main.c
@brief : Main program body
@attention
Copyright (c) 2024 STMicroelectronics.
All rights reserved.
This software is licensed under terms that can be found in the LICENSE file
in the root directory of this software component.
If no LICENSE file comes with this software, it is provided AS-IS.
/ / USER CODE END Header / / Includes ------------------------------------------------------------------*/
include "main.h"
include "tim.h"
include "usart.h"
include "gpio.h"
include "stdio.h"
/ Private includes ----------------------------------------------------------/ / USER CODE BEGIN Includes /
/ USER CODE END Includes /
/ Private typedef -----------------------------------------------------------/ / USER CODE BEGIN PTD /
/ USER CODE END PTD /
/ Private define ------------------------------------------------------------/ / USER CODE BEGIN PD /
/ USER CODE END PD /
/ Private macro -------------------------------------------------------------/ / USER CODE BEGIN PM /
/ USER CODE END PM /
/ Private variables ---------------------------------------------------------/
/ USER CODE BEGIN PV / / USER CODE END PV /
/ Private function prototypes -----------------------------------------------/ void SystemClock_Config(void); / USER CODE BEGIN PFP /
if _user_debug
void user_debug(void);
endif
/ USER CODE END PFP /
/ Private user code ---------------------------------------------------------/ / USER CODE BEGIN 0 /
/ USER CODE END 0 /
/**
@brief The application entry point.
@retval int / int main(void) { / USER CODE BEGIN 1 / / USER CODE END 1 */
/ MCU Configuration--------------------------------------------------------/
/ Reset of all peripherals, Initializes the Flash interface and the Systick. / HAL_Init();
/ USER CODE BEGIN Init /
/ USER CODE END Init /
/ Configure the system clock / SystemClock_Config();
/ USER CODE BEGIN SysInit / __disable_irq(); / USER CODE END SysInit /
/ Initialize all configured peripherals / MX_GPIO_Init(); MX_TIM15_Init(); MX_TIM16_Init(); MX_TIM17_Init(); MX_TIM1_Init(); MX_TIM2_Init(); MX_TIM3_Init(); MX_TIM5_Init(); MX_TIM20_Init(); MX_USART1_UART_Init();
/ USER CODE BEGIN 2 /
// HAL_Delay(1000);
if _user_debug
user_debug();
endif
TIM15->PSC = 1 - 1; TIM15->ARR = 42500 - 1; TIM15->CCR1 = 42500 / 2;
TIM3->PSC = 1 - 1; TIM3->ARR = 42500 - 1; TIM3->CCR2 = 42500 / 2;
TIM16->PSC = 1 - 1; TIM16->ARR = 42500 - 1; TIM16->CCR1 = 42500 / 2;
TIM17->PSC = 1 - 1; TIM17->ARR = 42500 - 1; TIM17->CCR1 = 42500 / 2;
TIM20->PSC = 1 - 1; TIM20->ARR = 42500 - 1; TIM20->CCR1 = 42500 / 2;
TIM5->PSC = 1 - 1; TIM5->ARR = 42500 - 1; TIM5->CCR3 = 42500 / 2;
TIM1->PSC = 1 - 1; TIM1->ARR = 42500 - 1; TIM1->CCR2 = 42500 / 2;
TIM2->PSC = 1 - 1; TIM2->ARR = 42500 - 1; TIM2->CCR3 = 42500 / 2;
HAL_TIM_PWM_Start(&htim15, TIM_CHANNEL_1); HAL_TIM_PWM_Start(&htim3, TIM_CHANNEL_2); HAL_TIM_PWM_Start(&htim16, TIM_CHANNEL_1); HAL_TIM_PWM_Start(&htim17, TIM_CHANNEL_1); HAL_TIM_PWM_Start(&htim20, TIM_CHANNEL_1); HAL_TIM_PWM_Start(&htim5, TIM_CHANNEL_3); HAL_TIM_PWM_Start(&htim1, TIM_CHANNEL_2); HAL_TIM_PWM_Start(&htim2, TIM_CHANNEL_3);
HAL_GPIO_WritePin(Relay_1_GPIO_Port, Relay_1_Pin, GPIO_PIN_SET); user_debug(); // HAL_Delay(1000);
HAL_TIM_PWM_Stop(&htim15, TIM_CHANNEL_1); HAL_TIM_PWM_Stop(&htim3, TIM_CHANNEL_2); HAL_TIM_PWM_Stop(&htim16, TIM_CHANNEL_1); HAL_TIM_PWM_Stop(&htim17, TIM_CHANNEL_1); HAL_TIM_PWM_Stop(&htim20, TIM_CHANNEL_1); HAL_TIM_PWM_Stop(&htim5, TIM_CHANNEL_3); HAL_TIM_PWM_Stop(&htim1, TIM_CHANNEL_2); HAL_TIM_PWM_Stop(&htim2, TIM_CHANNEL_3);
HAL_GPIO_WritePin(Relay_1_GPIO_Port, Relay_1_Pin, GPIO_PIN_RESET); // HAL_Delay(1000); user_debug(); / USER CODE END 2 /
/ Infinite loop / / USER CODE BEGIN WHILE / HAL_GPIO_WritePin(Relay_1_GPIO_Port, Relay_1_Pin, GPIO_PIN_SET); TIM5->PSC = 1 - 1; TIM5->ARR = 11333 - 1; TIM5->CCR3 = 11333 / 2;
TIM2->PSC = 1 - 1; TIM2->ARR = 11333 - 1; TIM2->CCR3 = 11333 / 2; /TIM2和TIM5重新赋值后 启动8路PWM输出 TIM2和TIM5大约会延时15s后再输出 其他6路正常/ HAL_TIM_PWM_Start(&htim15, TIM_CHANNEL_1); HAL_TIM_PWM_Start(&htim3, TIM_CHANNEL_2); HAL_TIM_PWM_Start(&htim16, TIM_CHANNEL_1); HAL_TIM_PWM_Start(&htim17, TIM_CHANNEL_1); HAL_TIM_PWM_Start(&htim20, TIM_CHANNEL_1); HAL_TIM_PWM_Start(&htim5, TIM_CHANNEL_3); HAL_TIM_PWM_Start(&htim1, TIM_CHANNEL_2); HAL_TIM_PWM_Start(&htim2, TIM_CHANNEL_3); while (1) {
if 0
/**/ HAL_GPIO_WritePin(Relay_1_GPIO_Port, Relay_1_Pin, GPIO_PIN_RESET);
endif
/ USER CODE END WHILE /
/ USER CODE BEGIN 3 / } / USER CODE END 3 / }
/**
@brief System Clock Configuration
@retval None */ void SystemClock_Config(void) { RCC_OscInitTypeDef RCC_OscInitStruct = {0}; RCC_ClkInitTypeDef RCC_ClkInitStruct = {0};
/* Configure the main internal regulator output voltage / HAL_PWREx_ControlVoltageScaling(PWR_REGULATOR_VOLTAGE_SCALE1_BOOST);
/** Initializes the RCC Oscillators according to the specified parameters
in the RCC_OscInitTypeDef structure. */ RCC_OscInitStruct.OscillatorType = RCC_OSCILLATORTYPE_HSE; RCC_OscInitStruct.HSEState = RCC_HSE_ON; RCC_OscInitStruct.PLL.PLLState = RCC_PLL_ON; RCC_OscInitStruct.PLL.PLLSource = RCC_PLLSOURCE_HSE; RCC_OscInitStruct.PLL.PLLM = RCC_PLLM_DIV6; RCC_OscInitStruct.PLL.PLLN = 85; RCC_OscInitStruct.PLL.PLLP = RCC_PLLP_DIV2; RCC_OscInitStruct.PLL.PLLQ = RCC_PLLQ_DIV2; RCC_OscInitStruct.PLL.PLLR = RCC_PLLR_DIV2; if (HAL_RCC_OscConfig(&RCC_OscInitStruct) != HAL_OK) { Error_Handler(); }
/* Initializes the CPU, AHB and APB buses clocks / RCC_ClkInitStruct.ClockType = RCC_CLOCKTYPE_HCLK | RCC_CLOCKTYPE_SYSCLK | RCC_CLOCKTYPE_PCLK1 | RCC_CLOCKTYPE_PCLK2; RCC_ClkInitStruct.SYSCLKSource = RCC_SYSCLKSOURCE_PLLCLK; RCC_ClkInitStruct.AHBCLKDivider = RCC_SYSCLK_DIV1; RCC_ClkInitStruct.APB1CLKDivider = RCC_HCLK_DIV1; RCC_ClkInitStruct.APB2CLKDivider = RCC_HCLK_DIV1;
if (HAL_RCC_ClockConfig(&RCC_ClkInitStruct, FLASH_LATENCY_4) != HAL_OK) { Error_Handler(); } }
/ USER CODE BEGIN 4 / void HAL_IncTick(void) {
uwTick += uwTickFreq; } int fputc(int ch, FILE f) { HAL_UART_Transmit(&huart1, (uint8_t )&ch, 1, 1000);
return (ch); }
if _user_debug
void user_debug(void) {
uint32_t CPU_Sn0, CPU_Sn1, CPU_Sn2; CPU_Sn0 = (__IO uint32_t )(0x1FFF7590); CPU_Sn1 = (__IO uint32_t )(0x1FFF7590 + 4); CPU_Sn2 = (__IO uint32_t )(0x1FFF7590 + 8);
printf("CPU : STM32G473VET6, LQFP100, Fre: %dMHz\r\n", SystemCoreClock / 1000000); printf("UID = %08X %08X %08X\n\r", CPU_Sn2, CPU_Sn1, CPU_Sn0); }
endif
/ USER CODE END 4 /
/**
@brief This function is executed in case of error occurrence.
@retval None / void Error_Handler(void) { / USER CODE BEGIN Error_Handler_Debug / / User can add his own implementation to report the HAL error return state / __disable_irq(); while (1) { } / USER CODE END Error_Handler_Debug */ }
ifdef USE_FULL_ASSERT
/**
@brief Reports the name of the source file and the source line number
where the assert_param error has occurred.
@param file: pointer to the source file name
@param line: assert_param error line source number
@retval None / void assert_failed(uint8_t file, uint32_t line) { / USER CODE BEGIN 6 / / User can add his own implementation to report the file name and line number, ex: printf("Wrong parameters value: file %s on line %d\r\n", file, line) / / USER CODE END 6 / }
endif / USE_FULL_ASSERT / |
|