另一个解题思路:Helium 在形如兆易创新这样的AI MCU标准答案之外,还有一些解题思路,典型如Arm Helium。文首提到瑞萨在去年进博会上展示的RA8系列MCU,能直接检测画面中的人(如下图),是不需要借助额外的加速器了。更有一种MCU竟可以进行AI计算且效果还不错的既视感。 瑞萨RA8采用Arm Cortex-M85首先也决定了这是颗性能彪悍的MCU,包括Arm v8.1-M内核,不同精度浮点数硬件支持及每周期数学性能提升,和表现在CoreMarks/MHz数字上相较于其他Cortex-M系列核心的领先。具体到RA8M1,也有1MB SRAM、2MB Flash,通信接口亦支持以太网、USB、CAN-FD等,还有Octal SPI可接Octal Flash或HyperRAM。 此前的采访中,瑞萨还提到RA8系列MCU也针对图形显示和外设功能进行了优化,能够更好地满足楼宇自动化、家用电器、智能家居等领域的需求,“特别是在图形显示和语音/视觉多模态AI应用方面”;加上强调安全性,RA8还适用于消费电子、医疗设备等。 不过这其中相关AI的关键,还在于Cortex-M85对于Arm Helium的支持,令M85的DSP/ML性能提升4倍、标量性能提升30%。用一句话总结Helium,这种技术很像是Cortex-M版本的Neon,但又考虑到了嵌入式系统成本与功耗敏感的特性。 Helium是Cortex-M系列的MVE矢量指令集扩展,主要为机器学习和DSP应用提供性能支持。Arm在资料中说Helium是在小型处理器内实现有效信号处理的全新设计,其中包含了不少新的架构特性,用以加强嵌入式使用场景中的计算性能,兼顾到面积和功耗——相当于把Neon能力(Cortex-A的SIMD指令)带到了M-Profile架构。 所以Helium设计的目标,是用单颗处理器取代以往某些需要搭配DSP的方案。瑞萨在发布RA8之时就说这么做填补了市场空白,因为这么做简化了软件开发、降低了芯片设计的复杂性和成本。前不久,我们就Helium技术实现撰文做过专门介绍,对其实现感兴趣的读者可以前往查看。 Helium和Neon都是128-bit矢量size,用浮点单元的寄存器作为矢量寄存器,也都有对应的一些矢量处理单元。但二者区别在于,Helium在设计理念上考虑对现有硬件资源的最大化利用,比如128bit数据通路是借助beatwise执行实现的,用的矢量寄存器也少于Neon;配套所谓的beatwise执行也有一系列指令、数据访存等改进... 这是凭藉RA8 MCU,就实现人检测,不需要其他加速器的关键。瑞萨的这一demo是与PlumerAI合作完成的。另外瑞萨此前还在进博会上演示了马达异常检测AI套件,借助Reality AI工具,进行电机运行的数据分析采集,生成的AI模型可进行电极异常检测。 在开发生态方面,除了配套AI/ML工具及开发套件,瑞萨也构建了AI/ML“应用公园”,包含解决方案套件、工具箱、应用实例和参考设计。比如瑞萨此前收购的Reality AI就能为非视觉类应用提供AI开发工具,包括为客户提供定制AI模型。
还能配套NPU加速器Helium对于有实时响应和超低功耗要求的应用而言,是相当不错的选择,而且MCU的特性也决定了开发的友好性。如果嵌入式应用追求更高的AI性能,很多市场参与者也开始为MCU配套AI加速器。比较具有代表性的是英飞凌前不久更新的PSOC MCU产品线,其中的PSOC Edge系列就强化了AI能力。 此系产品线中除了PSOC Edge E81的机器学习加速主要是基于Helium和英飞凌NNLite加速器,着眼于更低功耗的ML应用;E83/E84搭配的是Arm Ethos-U55 NPU。Arm在Ethos-U55的产品宣传页上就提到其AI性能提升了480倍,AI应用实现过程中0.1mm²面积就节约至多90%能耗。 上个月的媒体沟通会上,英飞凌展示了一个水果种类识别的demo——以前这是2.4GHz频率的x86 CPU才能干的活儿。PSOC Edge产品线现有芯片主要基于Cortex-M55微控制器内核,搭配Ethos-U55,就能相对轻松地对应这一场景。在400MHz主频下,推理时间约41.68ms。 另一则demo小游戏,是借助毫米波雷达(XENSIV)检测手势,手势操控屏幕上的火箭安全着陆(下图)。这则demo除了体现基于机器学习来识别手势点云数据,另外也体现了PSOC Edge E84的低功耗2D图形加速能力。 值得一提的是,为了让PSOC Edge能够适配电池驱动设备——如可穿戴产品,英飞凌为其加入了低功耗模式——always-on电源域涵盖LPPASS(低功耗可编程模拟子系统)、与传感器通信的SCB(串行通信总线),在系统进入深睡模式时仍可保持工作,实现always-on的传感和响应。 搭配英飞凌去年收购Imagimob获得AI软件方面的能力,结合Modus Toolbox工具,英飞凌也因此提供“端到端”机器学习开发能力,从数据到模型部署。英飞凌在采访中提到,其软件、解决方案最能体现英飞凌MCU的差异化竞争优势。 英飞凌定位PSOC E8x系列目标应用包括家电与工业设备中的HMI、智能家居、安全系统、机器人与可穿戴设备。其中E83/E84因为特别配了NPU,也就具备ML唤醒、视觉位置检测与人脸/物体识别特性。 英飞凌认为,未来万物互联都需要具备机器学习能力,除了像PSOC Edge这样强调AI能力的产品,“我们会看到PSOC Control和PSOC Connect最终也将具备机器学习能力”——PSOC Control是主要用于电机控制和功率转换的MCU系列,PSOC Connect则融入了无线连接特性。这也很好地体现了AI everywhere的趋势和潜力。 去年的采访中,瑞萨提到随着边缘和端侧AI的普及,应用开发理念也和过去完全不同。“可能开发者思考的不再是用什么样的算法来实现功能,而是有多少实用的数据来实现对应的算法”,因此数据成为关键,“数据会在未来的开发流程中占据重要位置”,AIoT开发理念因此更多转向以数据为中心。 过去这大半年我们看到越来越多的市场参与者推出AI MCU产品。无论是搭配专门的加速器,还是借助Helium以及高性能微控制器核心、丰沛的存储资源加强AI能力,这方面的市场需求显然正变得旺盛。英飞凌就认为边缘AI还将经历长期发展,而现在只是个开端。
|