[STM32L4+]

【STEVAL-STWINKT1B测评】4.驱动六轴陀螺仪(Ism330)

[复制链接]
751|2
手机看帖
扫描二维码
随时随地手机跟帖
电子烂人|  楼主 | 2024-8-29 11:07 | 显示全部楼层 |阅读模式
win, ev, TE, ISM, ST
本帖最后由 电子烂人 于 2024-8-29 11:07 编辑

#申请开发板# #申请原创# 之前的IS3DWB遇到了一些bug,在联系FAE修改。目前用polling的代码修改,识别到whoami错误。屏蔽掉这部分后只能读取到一次数据,之后会卡在循环中。
看了下nanoedge AI貌似对这个传感器不太好用,所以换ISM330传感器来采集数据1.传感器简介
ISM330DHCX是一种系统级封装器件,它具有专为工业4.0应用而量身定制的高性能3D数字加速度计和3D数字陀螺仪。加速计可选量程为±2/±4/±8/±16 g,陀螺仪可选量程为±125/±250/±500/±1000/±2000/±4000 dps,能够用在各种应用中。并且在ISM330DHCX的所有设计环节和校准方面进行了优化,实现了极高的精度、稳定性、极低噪声和完全的数据同步。
另外,ISM330DHCX还有:
  • 可编程有限状态机,处理来自加速度计、陀螺仪和一个外部传感器的数据
  • 机器学习内核
  • 智能嵌入式功能和中断:倾斜检测、自由落体、唤醒、6D/4D方向检测、单击和双击


该传感器完全可以满足工业自动化中各类电机的监测功能。
2.初始化配置:
6087266ce9252d7fca.png
基础配置和IS3DWB别无二致,只需要改一下对应的引脚即可。
8077666ce94ed2f11c.png
7831966ce9483b773c.png
3975566ce94cf8351a.png

另外INT1/INT2这两个引脚是配置传感器内部寄存器的
3024266ce94a5caa5b.png
5913866ce94aca1013.png

经询问ST的FAE,这两个引脚不配置也可以正常工作,只是工作模式固定
597366ce95b83670c.png
具体的IO配置如图:
6300466ce9bb8ce206.png
3995766ce9c1aeb422.png
3202466ce9c29abbf1.png
cube-mems包的配置同前一篇帖子,不再展示
4.代码分析:
定义加速度、陀螺仪的参数:
#ifndef AXIS
  #define AXIS                          3                         /* Axis should be defined between 1 and 3 */
#endif
#ifndef SAMPLES
  #define SAMPLES                       256                       /* Should be between 16 & 4096 */
#endif
#define MAX_FIFO_SIZE                   256                       /* The maximum number of data we can get in the FIFO is 512 but here we define max to 256 for our need */
#define FIFO_FULL                       512                       /* FIFO full size */
/************************************************************ Sensor type part ************************************************************/
#define ACCELEROMETER                                             /* Could be either ACCELEROMETER or GYROSCOPE */
/************************************************************ Sensors configuration part ************************************************************/
#ifdef ACCELEROMETER
  #ifndef ACCELEROMETER_ODR
    #define ACCELEROMETER_ODR           ISM330DHCX_XL_ODR_1666Hz  /* Shoud be between ISM330DHCX_XL_ODR_12Hz5 and ISM330DHCX_XL_ODR_6667Hz */
  #endif
  #ifndef ACCELEROMETER_FS
    #define ACCELEROMETER_FS            ISM330DHCX_2g             /* Should be between ISM330DHCX_2g and ISM330DHCX_8g */
  #endif
#else
  #ifndef GYROSCOPE_ODR
    #define GYROSCOPE_ODR               ISM330DHCX_GY_ODR_1666Hz  /* Shoud be between ISM330DHCX_GY_ODR_12Hz5 and ISM330DHCX_GY_ODR_6667Hz */
  #endif
  #ifndef GYROSCOPE_FS
    #define GYROSCOPE_FS                ISM330DHCX_2000dps        /* Should be between ISM330DHCX_125dps and ISM330DHCX_4000dps */
  #endif
#endif
/************************************************************ Datalogger / NEAI mode part ************************************************************/
#ifndef NEAI_MODE
  #define NEAI_MODE                     0                         /* 0: Datalogger mode, 1: NEAI functions mode */
#endif
#if (NEAI_MODE == 1)
  #ifndef NEAI_LEARN_NB
    #define NEAI_LEARN_NB               20                        /* Number of buffers to be learn by the NEAI library */
  #endif
#endif
定义部分

/* USER CODE BEGIN PV */
static int16_t data_raw_acceleration[3];
static int16_t data_raw_angular_rate[3];
static uint8_t whoamI, rst;
uint8_t neai_similarity = 0, neai_state = 0;
volatile uint8_t drdy = 0;
uint16_t data_left = (uint16_t) SAMPLES, number_read = 0, neai_buffer_ptr = 0, neai_cnt = 0;
float neai_time = 0.0;
static float neai_buffer[AXIS * SAMPLES] = {0.0};
stmdev_ctx_t dev_ctx;


/* USER CODE END PV */
初始化要用到的函数:
/* USER CODE BEGIN PV */
static int16_t data_raw_acceleration[3];
static int16_t data_raw_angular_rate[3];
static uint8_t whoamI, rst;
uint8_t neai_similarity = 0, neai_state = 0;
volatile uint8_t drdy = 0;
uint16_t data_left = (uint16_t) SAMPLES, number_read = 0, neai_buffer_ptr = 0, neai_cnt = 0;
float neai_time = 0.0;
static float neai_buffer[AXIS * SAMPLES] = {0.0};
stmdev_ctx_t dev_ctx;


/* USER CODE END PV */
/* USER CODE BEGIN PFP */
static int32_t platform_write(void *handle, uint8_t reg, const uint8_t *bufp, uint16_t len);
static int32_t platform_read(void *handle, uint8_t reg, uint8_t *bufp, uint16_t len);
static void ism330dhcx_initialize(void);
static void ism330dhcx_initialize_basics(void);
static void ism330dhcx_initialize_fifo(void);
static void ism330dhcx_get_buffer_from_fifo(uint16_t nb);
static float ism330dhcx_convert_gyro_data_to_mdps(int16_t gyro_raw_data);
static float ism330dhcx_convert_accel_data_to_mg(int16_t accel_raw_data);

/* USER CODE END PFP */
同前一篇帖子一样,定义platform
/* USER CODE BEGIN 1 */
  /* Initialize mems driver interface */
  dev_ctx.write_reg = platform_write;
  dev_ctx.read_reg = platform_read;
  dev_ctx.handle = &hspi3;
  /* USER CODE END 1 */
在主循环中用FIFO采集加速度数据,并用串口打印出来。
while (1)
  {
    uint8_t wtm_flag = 0, status2 = 0;
    uint16_t num = 0;
    if (drdy) {
      /* Reset data ready condition */
      drdy = 0;
      ism330dhcx_read_reg(&dev_ctx, ISM330DHCX_FIFO_STATUS2, &status2, 1);
      wtm_flag = status2 >> 7;
      if (wtm_flag) {
        ism330dhcx_fifo_data_level_get(&dev_ctx, &num);
        if (data_left < num) {
          num = data_left;
        }
        ism330dhcx_get_buffer_from_fifo(num);
        data_left -= num;
        number_read += num;
        if (data_left == 0) {
          ism330dhcx_fifo_mode_set(&dev_ctx, ISM330DHCX_BYPASS_MODE);
#if NEAI_MODE
          uint32_t cycles_cnt = 0;
          if (neai_cnt < NEAI_LEARN_NB) {
            neai_cnt++;
            KIN1_ResetCycleCounter();
            neai_state = neai_anomalydetection_learn(neai_buffer);
            cycles_cnt = KIN1_GetCycleCounter();
            neai_time = (cycles_cnt * 1000000.0) / HAL_RCC_GetSysClockFreq();
            printf("Learn: %d / %d. NEAI learn return: %d. Cycles counter: %ld = %.1f µs at %ld Hz.\n",
                  neai_cnt, NEAI_LEARN_NB, neai_state, cycles_cnt, neai_time, HAL_RCC_GetSysClockFreq());
          }
          else {
            KIN1_ResetCycleCounter();
            neai_state = neai_anomalydetection_detect(neai_buffer, &neai_similarity);
            cycles_cnt = KIN1_GetCycleCounter();
            neai_time = (cycles_cnt * 1000000.0) / HAL_RCC_GetSysClockFreq();
            printf("Similarity: %d / 100. NEAI detect return: %d. Cycles counter: %ld = %.1f µs at %ld Hz.\n",
                  neai_similarity, neai_state, cycles_cnt, neai_time, HAL_RCC_GetSysClockFreq());
          }
#else
          for (uint16_t i = 0; i < AXIS * SAMPLES; i++) {
            printf("%.3f ", neai_buffer[i]);
          }
          printf("\n");
#endif
          data_left = (uint16_t) SAMPLES;
          number_read = 0;
          memset(neai_buffer, 0x00, AXIS * SAMPLES * sizeof(float));
          if (SAMPLES <= MAX_FIFO_SIZE) {
            ism330dhcx_fifo_watermark_set(&dev_ctx, (uint16_t) SAMPLES);
          }
          else {
            ism330dhcx_fifo_watermark_set(&dev_ctx, (uint16_t) MAX_FIFO_SIZE);
          }
          ism330dhcx_fifo_mode_set(&dev_ctx, ISM330DHCX_STREAM_MODE);
        }
        else if (data_left < MAX_FIFO_SIZE) {
          ism330dhcx_fifo_watermark_set(&dev_ctx, data_left);
        }
      }
    }
    /* USER CODE END WHILE */

    /* USER CODE BEGIN 3 */
  }
  /* USER CODE END 3 */
另外把串口数据打印部分重定义一下:
int __io_putchar(int ch)
{
uint8_t c[1];
c[0] = ch & 0x00FF;
HAL_UART_Transmit(&huart2, &*c, 1, 10);
return ch;
}
其他几个函数如写入,读取等直接使用例程:
static int32_t platform_write(void *handle, uint8_t reg, const uint8_t *bufp, uint16_t len)
{
  HAL_GPIO_WritePin(CS_DHC_GPIO_Port, CS_DHC_Pin, GPIO_PIN_RESET);
  HAL_SPI_Transmit(handle, ®, 1, 1000);
  HAL_SPI_Transmit(handle, (uint8_t*) bufp, len, 1000);
  HAL_GPIO_WritePin(CS_DHC_GPIO_Port, CS_DHC_Pin, GPIO_PIN_SET);
  return 0;
}

/*
* [url=home.php?mod=space&uid=247401]@brief[/url]  Read generic device register (platform dependent)
*
* @param  handle    customizable argument. In this examples is used in
*                   order to select the correct sensor bus handler.
* @param  reg       register to read
* @param  bufp      pointer to buffer that store the data read
* @param  len       number of consecutive register to read
*
*/
static int32_t platform_read(void *handle, uint8_t reg, uint8_t *bufp, uint16_t len)
{
  reg |= 0x80;
  HAL_GPIO_WritePin(CS_DHC_GPIO_Port, CS_DHC_Pin, GPIO_PIN_RESET);
  HAL_SPI_Transmit(handle, ®, 1, 1000);
  HAL_SPI_Receive(handle, bufp, len, 1000);
  HAL_GPIO_WritePin(CS_DHC_GPIO_Port, CS_DHC_Pin, GPIO_PIN_SET);
  return 0;
}

/*
* [url=home.php?mod=space&uid=247401]@brief[/url]  Initialize ISM330DHCX sensor interface
*
* @param  No
*
* [url=home.php?mod=space&uid=266161]@return[/url] No
*
*/
static void ism330dhcx_initialize()
{
  ism330dhcx_initialize_basics();
#ifdef ACCELEROMETER
  /* Accelelerometer configuration */
  ism330dhcx_xl_data_rate_set(&dev_ctx, ACCELEROMETER_ODR);
  ism330dhcx_xl_full_scale_set(&dev_ctx, ACCELEROMETER_FS);
#else
  /* Gyroscope configuration */
  ism330dhcx_gy_data_rate_set(&dev_ctx, GYROSCOPE_ODR);
  ism330dhcx_gy_full_scale_set(&dev_ctx, GYROSCOPE_FS);
#endif
  ism330dhcx_initialize_fifo();
}

/*
* @brief  Initialize ISM330DHCX basics
*
* @param  No
*
* [url=home.php?mod=space&uid=266161]@return[/url] No
*
*/
static void ism330dhcx_initialize_basics()
{
  /* Check device ID */
  whoamI = 0;

  do {
    /* Wait sensor boot time */
    HAL_Delay(10);
    ism330dhcx_device_id_get(&dev_ctx, &whoamI);
  } while (whoamI != ISM330DHCX_ID);

  /* Restore default configuration */
  ism330dhcx_reset_set(&dev_ctx, PROPERTY_ENABLE);

  do {
    ism330dhcx_reset_get(&dev_ctx, &rst);
  } while (rst);

  /* Start device configuration. */
  ism330dhcx_device_conf_set(&dev_ctx, PROPERTY_ENABLE);
}

/*
* @brief  Initialize ISM330DHCX internal FIFO
*
* @param  No
*
* @return No
*
*/
static void ism330dhcx_initialize_fifo()
{
#ifdef ACCELEROMETER
  /* Batch odr config */
  ism330dhcx_fifo_xl_batch_set(&dev_ctx, ACCELEROMETER_ODR);
  ism330dhcx_fifo_gy_batch_set(&dev_ctx, 0);
#else
  /* Batch odr config */
  ism330dhcx_fifo_xl_batch_set(&dev_ctx, 0);
  ism330dhcx_fifo_gy_batch_set(&dev_ctx, GYROSCOPE_ODR);
#endif
  /* FIFO MODE */
  ism330dhcx_fifo_mode_set(&dev_ctx, ISM330DHCX_BYPASS_MODE);
  HAL_Delay(10);
  ism330dhcx_fifo_mode_set(&dev_ctx, ISM330DHCX_STREAM_MODE);
  /* Watermark config */
  if (SAMPLES <= MAX_FIFO_SIZE) {
    ism330dhcx_fifo_watermark_set(&dev_ctx, (uint16_t) SAMPLES);
  }
  else {
    ism330dhcx_fifo_watermark_set(&dev_ctx, (uint16_t) MAX_FIFO_SIZE);
  }
  uint8_t ctrl = 0x08;
  ism330dhcx_write_reg(&dev_ctx, ISM330DHCX_INT1_CTRL, (uint8_t *) &ctrl, 1);
}

/*
* @brief  Get accelerometer or gyroscope data from
*         ISM330DHCX using the internal FIFO buffer
*
* @param  No
*
* @return No
*
*/
static void ism330dhcx_get_buffer_from_fifo(uint16_t nb)
{
  static int16_t dummy[3];
  ism330dhcx_fifo_tag_t reg_tag;
  for (uint16_t i = 0; i < nb; i++) {
    /* Read FIFO tag */
    ism330dhcx_fifo_sensor_tag_get(&dev_ctx, ®_tag);
    if(reg_tag == ISM330DHCX_XL_NC_TAG) {
      memset(data_raw_acceleration, 0x00, 3 * sizeof(int16_t));
      ism330dhcx_fifo_out_raw_get(&dev_ctx, (uint8_t *) data_raw_acceleration);
      for(uint8_t j = 0; j < AXIS; j++) {
        neai_buffer[(AXIS * neai_buffer_ptr) + (AXIS * i) + j] = ism330dhcx_convert_accel_data_to_mg(data_raw_acceleration[j]);
      }
    }
    else if(reg_tag == ISM330DHCX_GYRO_NC_TAG) {
      memset(data_raw_angular_rate, 0x00, 3 * sizeof(int16_t));
      ism330dhcx_fifo_out_raw_get(&dev_ctx, (uint8_t *) data_raw_angular_rate);
      for(uint8_t j = 0; j < AXIS; j++) {
        neai_buffer[(AXIS * neai_buffer_ptr) + (AXIS * i) + j] = ism330dhcx_convert_gyro_data_to_mdps(data_raw_angular_rate[j]);
      }
    }
    else {
      /* Flush unused samples */
      printf("Bad sensor tag: %d.\n", reg_tag);
      memset(dummy, 0x00, 3 * sizeof(int16_t));
      ism330dhcx_fifo_out_raw_get(&dev_ctx, (uint8_t *) dummy);
    }
  }
  neai_buffer_ptr += nb;
  if (neai_buffer_ptr == SAMPLES) {
    neai_buffer_ptr = 0;
  }
}

/*
* @brief  Convert gyroscope raw data to milli degrees per second (mdps)
*
* @param  gyro_raw_data: which is gyroscope raw data
*                        depending on the full scale selected
*
* @return The converted value in milli degrees per second (mdps)
*
*/
static float ism330dhcx_convert_gyro_data_to_mdps(int16_t gyro_raw_data)
{
  float gyro_data_mdps = 0.0;
#ifdef GYROSCOPE
  switch (GYROSCOPE_FS)
  {
  case ISM330DHCX_125dps:
    gyro_data_mdps = ism330dhcx_from_fs125dps_to_mdps(gyro_raw_data);
    break;
  case ISM330DHCX_250dps:
    gyro_data_mdps = ism330dhcx_from_fs250dps_to_mdps(gyro_raw_data);
    break;
  case ISM330DHCX_500dps:
    gyro_data_mdps = ism330dhcx_from_fs500dps_to_mdps(gyro_raw_data);
    break;
  case ISM330DHCX_1000dps:
    gyro_data_mdps = ism330dhcx_from_fs1000dps_to_mdps(gyro_raw_data);
    break;
  case ISM330DHCX_2000dps:
    gyro_data_mdps = ism330dhcx_from_fs2000dps_to_mdps(gyro_raw_data);
    break;
  case ISM330DHCX_4000dps:
    gyro_data_mdps = ism330dhcx_from_fs4000dps_to_mdps(gyro_raw_data);
    break;
  default:
    gyro_data_mdps = 0.0;
    break;
  }
#endif
  return gyro_data_mdps;
}

/*
* @brief  Convert accelerometer raw data to milli-G' (mg)
*
* @param  accel_raw_data: which is accelerometer raw data
*                        depending on the full scale selected
*
* @return The converted value in milli-G' (mg)
*
*/
static float ism330dhcx_convert_accel_data_to_mg(int16_t accel_raw_data)
{
  float accel_data_mg = 0.0;
#ifdef ACCELEROMETER
  switch (ACCELEROMETER_FS)
  {
  case ISM330DHCX_2g:
    accel_data_mg = ism330dhcx_from_fs2g_to_mg(accel_raw_data);
    break;
  case ISM330DHCX_4g:
    accel_data_mg = ism330dhcx_from_fs4g_to_mg(accel_raw_data);
    break;
  case ISM330DHCX_8g:
    accel_data_mg = ism330dhcx_from_fs8g_to_mg(accel_raw_data);
    break;
  case ISM330DHCX_16g:
    accel_data_mg = ism330dhcx_from_fs16g_to_mg(accel_raw_data);
    break;
  default:
    accel_data_mg = 0.0;
    break;
  }
#endif
  return accel_data_mg;
}
代码编译,烧录到板卡中即可
5.演示
(审核通过之后上传)




使用特权

评论回复
飞思啦| | 2024-9-2 17:00 | 显示全部楼层
最近在研究单轴加速度计的单击、双击,这个还是有意思

使用特权

评论回复
发新帖 我要提问
您需要登录后才可以回帖 登录 | 注册

本版积分规则

10

主题

37

帖子

0

粉丝