这篇来学习测试下SDRAM存储器数据的读写。
一、硬件部分
1.1、SDRAM部分电路图
1.2、SDRAM芯片手册部分
开发板上焊接的芯片型号是IS42S32400,128Mb的SDRAM
芯片内部框图
1.3、芯片BANK
芯片支持两个BANK段
开发板的 SDRAM使用了BANK2存储开始地址0xD0000000
二、程序部分
测试使用官方BSP中的驱动程序
2.1、stm32h745i_discovery_sdram.c
/**
******************************************************************************
* [url=home.php?mod=space&uid=288409]@file[/url] stm32h745i_discovery_sdram.c
* [url=home.php?mod=space&uid=187600]@author[/url] MCD Application Team
* [url=home.php?mod=space&uid=247401]@brief[/url] This file includes the SDRAM driver for the MT48LC4M32B2B5-6A memory
* device mounted on STM32H745I-DISCO boards.
@verbatim
How To use this driver:
-----------------------
- This driver is used to drive the MT48LC4M32B2B5-6A SDRAM external memory mounted
on STM32H745I-DISCO board.
- This driver does not need a specific component driver for the SDRAM device
to be included with.
Driver description:
------------------
+ Initialization steps:
o Initialize the SDRAM external memory using the BSP_SDRAM_Init() function. This
function includes the MSP layer hardware resources initialization and the
FMC controller configuration to interface with the external SDRAM memory.
o It contains the SDRAM initialization sequence to program the SDRAM external
device using the function BSP_SDRAM_Initialization_sequence(). Note that this
sequence is standard for all SDRAM devices, but can include some differences
from a device to another. If it is the case, the right sequence should be
implemented separately.
+ SDRAM read/write operations
o SDRAM external memory can be accessed with read/write operations once it is
initialized.
Read/write operation can be performed with AHB access using the functions
BSP_SDRAM_ReadData()/BSP_SDRAM_WriteData(), or by MDMA transfer using the functions
BSP_SDRAM_ReadData_DMA()/BSP_SDRAM_WriteData_DMA().
o The AHB access is performed with 32-bit width transaction, the MDMA transfer
configuration is fixed at single (no burst) word transfer (see the
SDRAM_MspInit() static function).
o User can implement his own functions for read/write access with his desired
configurations.
o If interrupt mode is used for MDMA transfer, the function BSP_SDRAM_MDMA_IRQHandler()
is called in IRQ handler file, to serve the generated interrupt once the MDMA
transfer is complete.
o You can send a command to the SDRAM device in runtime using the function
BSP_SDRAM_Sendcmd(), and giving the desired command as parameter chosen between
the predefined commands of the "FMC_SDRAM_CommandTypeDef" structure.
@endverbatim
******************************************************************************
* @attention
*
* Copyright (c) 2017 STMicroelectronics.
* All rights reserved.
*
* This software is licensed under terms that can be found in the LICENSE file
* in the root directory of this software component.
* If no LICENSE file comes with this software, it is provided AS-IS.
*
******************************************************************************
*/
/* Includes ------------------------------------------------------------------*/
#include "stm32h745i_discovery_sdram.h"
/** @addtogroup BSP
* @{
*/
/** @addtogroup STM32H745I_DISCO
* @{
*/
/** @defgroup STM32H745I_DISCO_SDRAM SDRAM
* @{
*/
/** @defgroup STM32H745I_DISCO_SDRAM_Exported_Variables Exported Variables
* @{
*/
SDRAM_HandleTypeDef hsdram[SDRAM_INSTANCES_NBR];
/**
* @}
*/
/** @defgroup STM32H745I_DISCO_SDRAM_Private_Variables Private Variables
* @{
*/
#if (USE_HAL_SDRAM_REGISTER_CALLBACKS == 1)
static uint32_t IsMspCallbacksValid = 0;
#endif
/**
* @}
*/
/** @defgroup STM32H745I_DISCO_SDRAM_Private_Function_Prototypes Private Functions Prototypes
* @{
*/
static void SDRAM_MspInit(SDRAM_HandleTypeDef *hSdram);
static void SDRAM_MspDeInit(SDRAM_HandleTypeDef *hSdram);
/**
* @}
*/
/** @defgroup STM32H745I_DISCO_SDRAM_Exported_Functions Exported Functions
* @{
*/
/**
* @brief Initializes the SDRAM device.
* @param Instance SDRAM Instance
* @retval BSP status
*/
int32_t BSP_SDRAM_Init(uint32_t Instance)
{
int32_t ret = BSP_ERROR_NONE;
static MT48LC4M32B2_Context_t pRegMode;
if (Instance >= SDRAM_INSTANCES_NBR)
{
ret = BSP_ERROR_WRONG_PARAM;
}
else
{
#if (USE_HAL_SDRAM_REGISTER_CALLBACKS == 1)
/* Register the SDRAM MSP Callbacks */
if (IsMspCallbacksValid == 0)
{
if (BSP_SDRAM_RegisterDefaultMspCallbacks(Instance) != BSP_ERROR_NONE)
{
return BSP_ERROR_PERIPH_FAILURE;
}
}
#else
/* Msp SDRAM initialization */
SDRAM_MspInit(&hsdram[Instance]);
#endif /* USE_HAL_SDRAM_REGISTER_CALLBACKS */
if (MX_SDRAM_BANK2_Init(&hsdram[Instance], FMC_SDRAM_ROW_BITS_NUM_12, FMC_SDRAM_MEM_BUS_WIDTH_16) != HAL_OK)
{
ret = BSP_ERROR_NO_INIT;
}
else
{
/* External memory mode register configuration */
pRegMode.TargetBank = FMC_SDRAM_CMD_TARGET_BANK2;
pRegMode.RefreshMode = MT48LC4M32B2_AUTOREFRESH_MODE_CMD;
pRegMode.RefreshRate = REFRESH_COUNT;
pRegMode.BurstLength = MT48LC4M32B2_BURST_LENGTH_1;
pRegMode.BurstType = MT48LC4M32B2_BURST_TYPE_SEQUENTIAL;
pRegMode.CASLatency = MT48LC4M32B2_CAS_LATENCY_3;
pRegMode.OperationMode = MT48LC4M32B2_OPERATING_MODE_STANDARD;
pRegMode.WriteBurstMode = MT48LC4M32B2_WRITEBURST_MODE_SINGLE;
/* SDRAM initialization sequence */
if (MT48LC4M32B2_Init(&hsdram[Instance], &pRegMode) != MT48LC4M32B2_OK)
{
ret = BSP_ERROR_COMPONENT_FAILURE;
}
}
}
return ret;
}
/**
* @brief DeInitializes the SDRAM device.
* @param Instance SDRAM Instance
* @retval BSP status
*/
int32_t BSP_SDRAM_DeInit(uint32_t Instance)
{
int32_t ret = BSP_ERROR_NONE;
if (Instance >= SDRAM_INSTANCES_NBR)
{
ret = BSP_ERROR_WRONG_PARAM;
}
else
{
(void)HAL_SDRAM_DeInit(&hsdram[Instance]);
#if (USE_HAL_SDRAM_REGISTER_CALLBACKS == 0)
/* SDRAM controller de-initialization */
SDRAM_MspDeInit(&hsdram[Instance]);
#endif /* (USE_HAL_SDRAM_REGISTER_CALLBACKS == 0) */
}
return ret;
}
/**
* @brief Initializes the SDRAM periperal.
* @param hSdram SDRAM handle
* @param RowBitsNumber Number of row to set
* @param MemoryDataWidth The momory width 16 or 32bits
* @retval HAL status
*/
__weak HAL_StatusTypeDef MX_SDRAM_BANK2_Init(SDRAM_HandleTypeDef *hSdram, uint32_t RowBitsNumber,
uint32_t MemoryDataWidth)
{
FMC_SDRAM_TimingTypeDef sdram_timing;
/* SDRAM device configuration */
hsdram->Instance = FMC_SDRAM_DEVICE;
/* SDRAM handle configuration */
hSdram->Init.SDBank = FMC_SDRAM_BANK2;
hSdram->Init.ColumnBitsNumber = FMC_SDRAM_COLUMN_BITS_NUM_8;
hSdram->Init.RowBitsNumber = RowBitsNumber;
hSdram->Init.MemoryDataWidth = MemoryDataWidth;
hsdram->Init.InternalBankNumber = FMC_SDRAM_INTERN_BANKS_NUM_4;
hSdram->Init.CASLatency = FMC_SDRAM_CAS_LATENCY_3;
hSdram->Init.WriteProtection = FMC_SDRAM_WRITE_PROTECTION_DISABLE;
hSdram->Init.SDClockPeriod = FMC_SDRAM_CLOCK_PERIOD_2;
hSdram->Init.ReadBurst = FMC_SDRAM_RBURST_ENABLE;
hSdram->Init.ReadPipeDelay = FMC_SDRAM_RPIPE_DELAY_0;
/* Timing configuration for as SDRAM */
sdram_timing.LoadToActiveDelay = 2;
sdram_timing.ExitSelfRefreshDelay = 7;
sdram_timing.SelfRefreshTime = 4;
sdram_timing.RowCycleDelay = 7;
sdram_timing.WriteRecoveryTime = 2;
sdram_timing.RPDelay = 2;
sdram_timing.RCDDelay = 2;
/* SDRAM controller initialization */
if (HAL_SDRAM_Init(hSdram, &sdram_timing) != HAL_OK)
{
return HAL_ERROR;
}
return HAL_OK;
}
#if (USE_HAL_SDRAM_REGISTER_CALLBACKS == 1)
/**
* @brief Default BSP SDRAM Msp Callbacks
* @param Instance SDRAM Instance
* @retval BSP status
*/
int32_t BSP_SDRAM_RegisterDefaultMspCallbacks(uint32_t Instance)
{
int32_t ret = BSP_ERROR_NONE;
/* Check if the instance is supported */
if (Instance >= SDRAM_INSTANCES_NBR)
{
ret = BSP_ERROR_WRONG_PARAM;
}
else
{
/* Register MspInit/MspDeInit Callbacks */
if (HAL_SDRAM_RegisterCallback(&hsdram[Instance], HAL_SDRAM_MSP_INIT_CB_ID, SDRAM_MspInit) != HAL_OK)
{
ret = BSP_ERROR_PERIPH_FAILURE;
}
if (HAL_SDRAM_RegisterCallback(&hsdram[Instance], HAL_SDRAM_MSP_DEINIT_CB_ID, SDRAM_MspDeInit) != HAL_OK)
{
ret = BSP_ERROR_PERIPH_FAILURE;
}
else
{
IsMspCallbacksValid = 1;
}
}
/* Return BSP status */
return ret;
}
/**
* @brief BSP SDRAM Msp Callback registering
* @param Instance SDRAM Instance
* @param CallBacks pointer to MspInit/MspDeInit callbacks functions
* @retval BSP status
*/
int32_t BSP_SDRAM_RegisterMspCallbacks(uint32_t Instance, BSP_SDRAM_Cb_t *CallBacks)
{
int32_t ret = BSP_ERROR_NONE;
/* Check if the instance is supported */
if (Instance >= SDRAM_INSTANCES_NBR)
{
ret = BSP_ERROR_WRONG_PARAM;
}
else
{
/* Register MspInit/MspDeInit Callbacks */
if (HAL_SDRAM_RegisterCallback(&hsdram[Instance], HAL_SDRAM_MSP_INIT_CB_ID, CallBacks->pMspInitCb) != HAL_OK)
{
ret = BSP_ERROR_PERIPH_FAILURE;
}
if (HAL_SDRAM_RegisterCallback(&hsdram[Instance], HAL_SDRAM_MSP_DEINIT_CB_ID, CallBacks->pMspDeInitCb) != HAL_OK)
{
ret = BSP_ERROR_PERIPH_FAILURE;
}
else
{
IsMspCallbacksValid = 1;
}
}
/* Return BSP status */
return ret;
}
#endif /* (USE_HAL_SDRAM_REGISTER_CALLBACKS == 1) */
/**
* @brief Sends command to the SDRAM bank.
* @param Instance SDRAM Instance
* @param SdramCmd Pointer to SDRAM command structure
* @retval BSP status
*/
int32_t BSP_SDRAM_SendCmd(uint32_t Instance, FMC_SDRAM_CommandTypeDef *SdramCmd)
{
int32_t ret;
if (Instance >= SDRAM_INSTANCES_NBR)
{
ret = BSP_ERROR_WRONG_PARAM;
}
else if (MT48LC4M32B2_Sendcmd(&hsdram[Instance], SdramCmd) != MT48LC4M32B2_OK)
{
ret = BSP_ERROR_PERIPH_FAILURE;
}
else
{
ret = BSP_ERROR_NONE;
}
return ret;
}
/**
* @brief This function handles SDRAM MDMA interrupt request.
* @param Instance SDRAM instance
* @retval None
*/
void BSP_SDRAM_IRQHandler(uint32_t Instance)
{
HAL_MDMA_IRQHandler(hsdram[Instance].hmdma);
}
/**
* @}
*/
/** @defgroup STM32H745I_DISCO_SDRAM_Private_Functions Private Functions
* @{
*/
/**
* @brief Initializes SDRAM MSP.
* @param hSdram SDRAM handle
* @retval None
*/
static void SDRAM_MspInit(SDRAM_HandleTypeDef *hSdram)
{
static MDMA_HandleTypeDef mdma_handle;
GPIO_InitTypeDef gpio_init_structure;
/* Enable FMC clock */
__HAL_RCC_FMC_CLK_ENABLE();
/* Enable chosen MDMAx clock */
SDRAM_MDMAx_CLK_ENABLE();
/* Enable GPIOs clock */
__HAL_RCC_GPIOD_CLK_ENABLE();
__HAL_RCC_GPIOE_CLK_ENABLE();
__HAL_RCC_GPIOF_CLK_ENABLE();
__HAL_RCC_GPIOG_CLK_ENABLE();
__HAL_RCC_GPIOH_CLK_ENABLE();
/* Common GPIO configuration */
gpio_init_structure.Mode = GPIO_MODE_AF_PP;
gpio_init_structure.Pull = GPIO_PULLUP;
gpio_init_structure.Speed = GPIO_SPEED_FREQ_VERY_HIGH;
gpio_init_structure.Alternate = GPIO_AF12_FMC;
/* GPIOD configuration */
gpio_init_structure.Pin = GPIO_PIN_0 | GPIO_PIN_1 | GPIO_PIN_8 | GPIO_PIN_9 | GPIO_PIN_10 | \
GPIO_PIN_14 | GPIO_PIN_15;
HAL_GPIO_Init(GPIOD, &gpio_init_structure);
/* GPIOE configuration */
gpio_init_structure.Pin = GPIO_PIN_0 | GPIO_PIN_1 | GPIO_PIN_7 | GPIO_PIN_8 | GPIO_PIN_9 | \
GPIO_PIN_10 | GPIO_PIN_11 | GPIO_PIN_12 | GPIO_PIN_13 | GPIO_PIN_14 | \
GPIO_PIN_15;
HAL_GPIO_Init(GPIOE, &gpio_init_structure);
/* GPIOF configuration */
gpio_init_structure.Pin = GPIO_PIN_0 | GPIO_PIN_1 | GPIO_PIN_2 | GPIO_PIN_3 | GPIO_PIN_4 | \
GPIO_PIN_5 | GPIO_PIN_11 | GPIO_PIN_12 | GPIO_PIN_13 | GPIO_PIN_14 | \
GPIO_PIN_15;
HAL_GPIO_Init(GPIOF, &gpio_init_structure);
/* GPIOG configuration */
gpio_init_structure.Pin = GPIO_PIN_0 | GPIO_PIN_1 | GPIO_PIN_4 | GPIO_PIN_5 | GPIO_PIN_8 | GPIO_PIN_15;
HAL_GPIO_Init(GPIOG, &gpio_init_structure);
/* GPIOH configuration */
gpio_init_structure.Pin = GPIO_PIN_5 | GPIO_PIN_6 | GPIO_PIN_7 ;
HAL_GPIO_Init(GPIOH, &gpio_init_structure);
/* Configure common MDMA parameters */
mdma_handle.Init.Request = MDMA_REQUEST_SW;
mdma_handle.Init.TransferTriggerMode = MDMA_BLOCK_TRANSFER;
mdma_handle.Init.Priority = MDMA_PRIORITY_HIGH;
mdma_handle.Init.Endianness = MDMA_LITTLE_ENDIANNESS_PRESERVE;
mdma_handle.Init.SourceInc = MDMA_SRC_INC_WORD;
mdma_handle.Init.DestinationInc = MDMA_DEST_INC_WORD;
mdma_handle.Init.SourceDataSize = MDMA_SRC_DATASIZE_WORD;
mdma_handle.Init.DestDataSize = MDMA_DEST_DATASIZE_WORD;
mdma_handle.Init.DataAlignment = MDMA_DATAALIGN_PACKENABLE;
mdma_handle.Init.SourceBurst = MDMA_SOURCE_BURST_SINGLE;
mdma_handle.Init.DestBurst = MDMA_DEST_BURST_SINGLE;
mdma_handle.Init.BufferTransferLength = 128;
mdma_handle.Init.SourceBlockAddressOffset = 0;
mdma_handle.Init.DestBlockAddressOffset = 0;
mdma_handle.Instance = SDRAM_MDMAx_CHANNEL;
/* Associate the DMA handle */
__HAL_LINKDMA(hsdram, hmdma, mdma_handle);
/* Deinitialize the stream for new transfer */
HAL_MDMA_DeInit(&mdma_handle);
/* Configure the DMA stream */
HAL_MDMA_Init(&mdma_handle);
/* NVIC configuration for DMA transfer complete interrupt */
HAL_NVIC_SetPriority(SDRAM_MDMAx_IRQn, 0x0F, 0);
HAL_NVIC_EnableIRQ(SDRAM_MDMAx_IRQn);
}
/**
* @brief DeInitializes SDRAM MSP.
* @param hSdram SDRAM handle
* @retval None
*/
static void SDRAM_MspDeInit(SDRAM_HandleTypeDef *hSdram)
{
static MDMA_HandleTypeDef mdma_handle;
/* Prevent unused argument(s) compilation warning */
UNUSED(hSdram);
/* Disable NVIC configuration for DMA interrupt */
HAL_NVIC_DisableIRQ(SDRAM_MDMAx_IRQn);
/* Deinitialize the stream for new transfer */
mdma_handle.Instance = SDRAM_MDMAx_CHANNEL;
(void)HAL_MDMA_DeInit(&mdma_handle);
}
/**
* @}
*/
/**
* @}
*/
/**
* @}
*/
/**
* @}
*/
2.2、main.c
程序中定义0xD0070000地址开始的一段存储区域
#include "main.h"
uint16_t sdram[2000] __attribute__((at(0xD0070000)));
static void MPU_Config(void);
static void SystemClock_Config(void);
static void CPU_CACHE_Enable(void);
static void Error_Handler(void);
void sdram_test(void)
{
uint32_t ts=0;
printf("\r\nwrite data test:\r\n");
for(ts=0;ts<1024;ts++)
{
sdram[ts]=ts;
if(ts%60==0)
{
printf("\r\n");
}
printf("%x ",sdram[ts]);
}
printf("\r\n");
printf("\r\n");
printf("\r\nread data test:\r\n");
for(ts=0;ts<1024;ts++)
{
sdram[ts]=ts;
if(ts%60==0)
{
printf("\r\n");
}
printf("%x ",sdram[ts]);
}
}
int main(void)
{
uint32_t i=0;
MPU_Config();
CPU_CACHE_Enable();
HAL_Init();
SystemClock_Config();
init_delay(400);
init_led();
init_uart3(115200);
if(BSP_SDRAM_Init(0) != BSP_ERROR_NONE)
{
printf("SDRAM Initialization : FAILED.\r\n");
}
else
{
printf("SDRAM Initialization : OK.");
}
sdram_test();
while (1)
{
LED6_TOGGLE();
HAL_Delay(100);
}
}
三、运行结果
下载程序后,串口输出写入和读出数据的内容
|