打印

电测仪表新手常见问题整合贴——传感器篇

[复制链接]
3843|6
手机看帖
扫描二维码
随时随地手机跟帖
跳转到指定楼层
楼主
mas888|  楼主 | 2012-9-29 15:18 | 只看该作者 回帖奖励 |倒序浏览 |阅读模式
本帖最后由 mas888 于 2012-9-29 15:22 编辑

一、投入式液位传感器工作原理及功能特点

投入式液位传感器一般采用扩散硅或陶瓷敏感元件的压阻效应,将静压转成电信号,经过温度补偿和线性校正。转换成4-20mADC标准电流信号输出。投入式液位传感器是静压液位测量,液体介质中,某一个深度产生的压力就是测量点以上的介质自身的重量所产生的。它与介质的密度和当地的重力加速度成正比。所以投入式液位传感器测量的物理量其实是压力,通过传感器的标定单位也可以得知。而实际的液位必须通过知道密度和重力加速度这两个参数后,通过换算获得。这样的换算在工业领域中通常是通过二次仪表或者PLC进行的。
投入式液位传感器直接投入到液体中,变送器部分可用法兰或支架固定,安装使用极为方便。
投入式液位传感器优点主要有:
1、稳定性好,精度高;
2、投入式液位计直接投入到被测介质中,安装使用相当方便;
3、固态结构,无可动部件,高可靠性,使用寿命长从水、油到粘度较大的糊状都可以进行高精度测量,不受被测介质起泡、沉积、电气特性的影响宽范围的温度补偿。投入式液位计具有电源反相极性保护及过载限流保护;
4、投入式、直杆式、法兰式、螺纹式、电感式、旋入式、浮球式结构设计,备有防阻塞型设计,安装简单,使用方便、互换能力强,高品质传感器的灵敏度高,响应速度快,准确反映流动或静态液面的细微变化,测量准确度高。
投入式液位传感器缺点表现为:测量信号需要换算;无法测量超过125℃的高温介质温度;测量介质的密度必须均匀一致。这几点也限制了其使用范围。


二、称重传感器的接线方法

称重传感器的出线方式有4线和6线两种,模块或称重变送器的接线也有4线和6线两种,要接4线还是6线首先要看你的硬件要求是怎样的,原则是:传感器能接6线的不接4线,必须接4线的就要进行短接。
一般的称重传感器都是六线制的,当接成四线制时,电源线(EXC-,EXC+)与反馈线(SEN-,SEN+)就分别短接了。SEN+和SEN-是补偿线路电阻用的。SEN+和EXC+是通路的,SEN-和EXC-是通路的。
EXC+和EXC-是给称重传感器供电的,但是由于称重模块和传感器之间的线路损耗,实际上传感器接收到的电压会小于供电电压。每个称重传感器都有一个 mV/V的特性,它输出的mV信号与接收到的电压密切相关,SENS+和SENS-实际上是称重传感器内的一个高阻抗回路,可以将称重模块实际接收到的电压反馈给称重模块。假设EXC+和EXC-为10V,线路损耗,传感器2mV/V,实际上传感器输出最大信号为()*2=19mV,而不是20mV。此时称重传感器内部就会把19mV作为最大量程,前提是传感器必须通过反馈回路把实际电压反馈给称重模块。在称重传感器上将EXC+与 SENS+短接,EXC-与SENS-短接,仅限于传感器与称重模块距离较近,电压损耗非常小的场合,否则测量存在误差。


三、电感式霍尔传感器结构及选用注意事项

电感式传感器通常用来近距离定位金属物体,因为主要是通过霍尔效应来完成检测,所以也被称为霍尔传感器。
电感式霍尔传感器内部结构由两部分构成:前端由缠绕着发射、接收线圈的铁芯构成检测部分;后端为电路部分,整体封装在塑料或金属外壳中。传感器工作时,电磁铁芯部分发生交变磁场,对靠近的金属物体表面产生涡流效应,从而削弱LC震荡电路,放大电路部分分析电磁铁芯接收线圈的微弱LC震荡电路变化,并给予相应的输出。
不同电感式霍尔传感器外形尺寸,其额定检测距离一般至多到100mm。通常状态下,各厂家对于传感器标称的检测距离为在实验室条件下测得的额定检测距离。电感式霍尔传感器实际应用中,考虑到各方面的环境因素,其可靠检测距离约为额定检测距离的80%,但传感器对于被测物也是有一定要求的。由于应用现场的被测物材料的导磁性和尺寸大小,一般情况下达不到传感器标准被测物的要求,那么电感式霍尔传感器的检测距离会进一步的衰减,这也就是很多用户感觉电感式霍尔传感器的检测距离比厂家标称的小很多的原因。在这种非标检测的情况下,各厂家及其不同系列产品的差异较大。另外,更深入的讲,在抗电磁干扰性、环境温度、电压扰动以及安装要求等方面,都存在着差异。
选择合适的电感式霍尔传感器,会大幅提升设备运转的稳定性和可靠性,也最大的可能性减少传感器的失效或损毁,减少不必要的维护投入。


四、称重传感器等级如何选择

在选择称重传感器的时候,它的称重等级是必须考虑的一个方面,它直接影响着称重的精度和准确性.那么我们如何选择称重传感器等级呢?下面简要介绍一下:
首先,它必须满足称重显示仪表的输入要求。称重显示仪表是对传感器的输出信号经过放大、A/D转换等处理之后显示称量的结果。所以,传感器的输出信号应该不小于仪表要求的输入信号大小,也就是把传感器输出灵敏度代入传感器和仪表的匹配公式,得出的结果大于或等于仪表要求的输入灵敏度。
传感器和仪表的匹配公式:
传感器输出灵敏度*激励电源电压*秤的最大称量
秤的分度数*传感器的个数*传感器量程
现在设一称量为25kg的定量包装秤,最大分度数为1000个分度;秤体采用3只L—BE—25型传感器,量程为25kg,灵敏度为2.0±0.008mV/V,拱桥电压力12V;秤采用AD4325仪表。问选择的传感器与仪表它们之间是否匹配。
通过资料查阅到AD4325仪表的输入灵敏度为0.6μV/d,根据传感器和仪表的匹配公式计算得出仪表的实际输入信号为:2×12×25/1000×3×25=8μV/d>0.6μv/d。因此,它满足上面所说的传感器的输出信号应该不小于仪表要求的输入信号大小,所以它们之间是匹配的。
除了满足称重显示仪表的输入要求,称重传感器等级还需要满足整台电子秤准确度的要求。通常,一台电子秤由秤体、传感器、仪表三部分所组成,在选择传感器准确度时候,应使传感器的准确度略大于理论计算值,但是由于理论一般会受到客观条件的制约,比方说秤体的强度差一点,仪表的性能不是很好、秤的工作环境比较恶劣等等方面的原因都直接影响到秤的准确度要求,因此得从各方面提高要求,既要考虑经济效益,又要确保达到称重的目的。
我们选择传感器的时候,不要一味追求它的高质量,满足自身使用的需要才是最好的,在选择称重传感器等级的时候也是。通常等级越高,价格也越贵,所以得综合进行考量。


五、什么是三轴加速度传感器

我们知道加速度传感器是能够去测量加速力的电子设备。大多数加速度传感器是根据压电效应的原理来工作完成的。谈到的压电效应就是对于不存在对称中心的异极晶体加在晶体上的外力除了使晶体发生形变以外,还将改变晶体的极化状态,在晶体内部建立电场,这种由于机械力作用使介质发生极化的现象,加速度传感器就是利用了其内部的由于加速度造成的晶体变形这个特性,晶体变形会产生电压,只要计算出产生电压和所施加的加速度之间的关系,就可以将加速度转化成电压输出。
在加速度传感器中有一种是三轴加速度传感器,同样的他是基于加速度的基本原来去实现工作的,加速度是个空间矢量,一方面,要准确了解物体的运动状态,必须测得其三个坐标轴上的分量;另一方面,在预先不知道物体运动方向的场合下,只有应用三轴加速度传感器来检测加速度信号。三轴加速度传感器具有体积小和重量轻特点,可以测量空间加速度,能够全面准确反映物体的运动性质,在航空航天、机器人、汽车和医学等领域得到广泛的应用。
目前的三轴加速度传感器大多采用压阻式、压电式和电容式工作原理,产生的加速度正比于电阻、电压和电容的变化,通过相应的放大和滤波电路进行采集。这个和普通的加速度传感器是基于同样的一个原理,所以在一定的技术上三个单轴就可以变成一个三轴。对于多数的传感器应用来看,两轴的加速度传感器已经能满足多数应用。但是有些方面的应用还是集中在三轴加速度传感器中例如在数采设备,贵重资产监测,碰撞监测,测量建筑物振动,风机,风力涡轮机和其他敏感的大型结构振动。
三轴加速度传感器的好处就是在预先不知道物体运动方向的场合下,只有应用三维加速度传感器来检测加速度信号。三维加速度传感器具有体积小和重量轻特点,可以测量空间加速度,能够全面准确反映物体的运动性质。

相关帖子

沙发
mas888|  楼主 | 2012-9-29 15:23 | 只看该作者
六、导致汽车氧传感器失效的几大因素

氧传感器失效是环保发动机经常发生的问题,导致了氧传感器失效的原因与中国燃油、润滑油、道路状况有很大的关系,汽车氧传感器失效主要有两种表现形式:传感器元件老化和中毒。氧传感器老化的主要原因是传感元件局部表面温度过高。氧传感器的传感元件受到污染而失效的现象称为中毒。氧传感器中毒主要是指一氧化碳中毒、硫中毒、铅中毒、硅中毒、锰铅中毒和磷中毒。
氧传感器老化
在发动机利用氧传感器进行闭环控制的过程中,混合气的空燃比总是控制在理论空燃比附近,排气中几乎没有过剩的燃油,但是发动机刚刚起动之后,为了快速预热发动机,需要供给足够的燃油,排气中过剩的燃油就会在氧传感器的表面产生燃烧反应,一方面是形成碳粒而造成氧传感器表面的保护剥落,另一方面是使传感元件局部表面温度过高而加速传感器老化。
一氧化碳中毒
由于长时间混合气过浓,燃烧不完全,排气中一氧化碳过多时,氧传感器就会发生一氧化碳中毒,由于铂金属不仅有氧化催化作用,还具有还原催化作用,在长期缺氧状态下,吸附在铂金属上的一氧化碳会被还原解析成碳,在铂金属表面形成碳沉积,当碳沉积覆盖较多时,就会使铂金属催化剂比表面积减少而使活性下降,导致氧传感器不能再正确反馈氧含量,从而中毒失去作用。
硫中毒
燃料中的硫燃烧后在排气中是以二氧化硫形式存在的,铂金属催化剂活性中心对二氧化硫有极强的亲和力,二氧化硫被活性中心吸附后经过氧化变成三氧化硫,三氧化硫与排气的水结合形成硫酸,硫酸与金属氧化物反应会生成硫酸盐,与未燃烧的燃料中某些化合物反应会生成硫酸胶质,最终形成硫化学络合物吸附在铂金属催化剂活性表面上,妨碍了催化剂对氧和一氧化碳的吸附,减弱了氧传感器对空燃比变化的敏感程度,丧失了储存氧和释放氧的功能,导致氧传感器中毒失效,润滑油中的磷硅对氧传感器的影响与硫基本相似。
铅中毒
燃油或润滑油添加剂中的铅离子与氧传感器的铂电极发生化学反应,导致催化剂铂的催化性能降低的现象,称为铅中毒。虽然现在都使用无铅汽油,大大减少了氧传感器铅中毒的机率。但是,由于燃油或润滑油的添加剂中含有多种铅化合物,氧传感器的铅中毒也是不可避免的。
硅中毒
发动机上的硅密封胶、硅树脂成型部件、铸件内的硅添加剂等都有硅离子,这些硅离子会污染氧传感器的外侧电极,氧传感器内部端子处密封用的硅橡胶会污染内侧电极。硅离子与氧传感器的铂电极发生化学反应而导致催化剂铂的催化性能降低的现象,称为硅中毒。
锰、铅中毒
燃料中的锰、铅等金属通常是以金属盐和金属氧化物的形式沉积在铂金属催化剂活性表面,它们与活性中心有很强的亲和力,结合生成络合物后不再分解,使铂金属催化剂的活性和选择性迅速下降而产生中毒现象,特别是锰盐和锰氧化物有储氧的功能,它沉积在铂金属催化剂活性表面会造成氧传感器误报,使氧传感器无**确反馈空燃比。
磷中毒
在传感器表面,磷很少以纯磷状态析出,而是以某种化合物状态析出,这些磷化物污染氧传感器的现象,称为磷中毒。磷化物的应用很广,可以用作润滑剂、防锈剂和清洗剂。在发动机磨合期间或活塞环磨损之后,发动机润滑油添加剂中的磷化物就会窜入气缸中燃烧并随排气排出。在低温状态下,磷化物是以微粒子状态析出并沉淀在传感器保护层的表面将气孔堵塞而导致传感器中毒;在高温状态下,磷化物会附着在氧传感器以及三元催化器表面使其受到污染。
氧传感器的老化和中毒是不可避免的。所以当汽车行驶一定里程后,应当更换氧传感器。平时应当经常检查汽车氧传感器是否已经失效,发现问题及时更换,这对行车安全也是一种保障,同时还能降低油耗并减少环境污染。


七、如何正确的使用示波器

由于你日复一日的依赖于示波器,所以选用恰能满足你要求的示波器的确是一重要任务。对不同厂商提供的示波器技术指标及特点进行期比较不仅费时而且容易混淆。本文所列出的诸项步骤可以帮助你加加快选择的过程并克服某些共同错误。不论你考虑哪一种品牌的示波器,下述步骤可以能帮助你客观评价仪器的性能。
在读完下面列出的十个步骤之后,你将获得你可能选择到并且能满足你应用要求的最好示波器的有关信息。
在开始选择示波器之初,你心中已大概有一价格范围。示波器的价格取决于多方面因素,包括带宽、采样率、通道数以及存储深度等。如果你只以价格为依据来购买,最终你有可能买不到你所需要的性能。所以如果仅考虑价格因素,你可以考虑租用一台示波器或者买一台二手设备。
1、确定你需要模拟还是数字示波器?
数字示波器和模拟示波器各有其优缺点。现代技术的发展使数字正确选用示波器的十个步骤示波器功能更强,响应更快而且价格也逐渐降低。这些优势使得模拟示波器很难与先进的数字示波器相匹敌。
模拟示波器的优点:
※ 操作控制均很熟悉
※ 对实时调整即时更新显示
※ 对诸如垂直灵敏度,时基扫描速度,跟踪位置以及触发电平等常用调接可以进行直接专门控制
※ 价格低
模拟示波器的缺点:
※ 精度低
※ 显示闪烁并且/或者显示模糊
※ 无预触发观测能力
※ 带宽局限于一定范围之内
※ 测量能力较弱
数字示波器的优点:
※ 显示可存储
※ 测量精度高
※ 亮度高,在任何虚拟水平扫速下聚集都很好
※ 有预触发观测能力
※ 峰值,毛刺检测
※ 自动测量
※ 可与计算机、打印机、绘图仪连接
※ 具有波形运算能力,波形数学函数运算功能
※ 有平均和无限余辉显示模式
※ 自校准
数字示波器的缺点:
※ 价格可能比较高
※ 操作可能不太直观;(因为功能比较多)
针对你的应用要求,对模拟及数串示波器缺点进行权衡比较,如果你觉得只有数字示波器才能提供你所需要的能力,请继续阅下面的各个步骤!
2、确定你对带宽的要求
测量交流波形的仪器通常都一频率上限,如果波形的频率在此之上则测量精度会变差。这频率上限就是仪器的带宽。
通常用仪器响应降低3bB处的频率来定义,你所需仪器带宽的数值取决于被测信号的特征以及你希望得到的测量精度。
示波器有两重类型的宽度,即重复(或模拟)带宽及实时带宽。很多数字示波器提供的模拟带宽比其基本采样率要高。这一点是可能的,如果一信
号重复出现,示波器并不一定要在一次完成所有的采集,而可以通过在每—次触发发生时获取波形的一部分,在多次循环触发之后构成显示波形 。(这过程通常很快,以致你不会注意到它的发生),重复带宽指标独立于示波器的采样速率。事实上,这一指标通常用来衡量示波器模拟放大器部分的带宽。
实时带宽适用于非重复或单次信号。示波器在一次触发过程中完成数字化,所以实时带宽取决于示波器的采样率,采样率与带宽之间的比值不是固定的。如果示波器有数字重构能力,这比值接近于4:1,如果没有重构,这比值通常是10:l。
有关采样速率部分可以参考第四个步骤。很多波形中包含的重要频率成分比波形的基频高出很多倍。例如,方波中包含个少比信号基频高出十倍的频率。高带宽示波器能使你更精确地观测这些高频成分。
下面图示的屏幕图形说明了50 MHz的方波在不同的四种示波器上进行观测的结果:
500MHz的示波器精确地显示了其中的高频成分,并且最好地表示了上升时间。150 MHz示波器的显示中则丢失了高频信号
通常的细节,显示的上升时间较真实值慢了很多,100 MHz的示波器则使上升时间看起来变得更慢。同时,你还以看到幅值的衰减。示波器带宽方波信号的基频还要低的时候,显示的波形已面日个非。
作为一基本准则,你所使用示波器的带宽应至少高出被测信号中的最高频率三倍。 如果你需要更高的精度,那么要求的带宽将更高。虽然精确的幅值测量并不完全取决于频率响应,但是仍要求示波器的带宽高出被测信号频率十倍。
对于典型测量,上升时间与带宽之间的关系可以近似为:Tr:0.35/3dB带宽对于定时测量,信号上升时间与示波器上升时间的比值越高,则测量误差越小。具体数据可以参照下表信号上升时间/示波器上升时间
1:1 41.4%
3:1 5.4%
5:1 2.0%
10:1 0.5%
简言之,如果你拥有带宽越高的示波器(上升时间越快),那么你的测量结果也就越精确。
你应该牢记下面几点:
※ 探头将影响测量精度,
※ 某些示波器所列出的最高带宽指标只局限于某一特定的电压范围,或者只在50欧姆输入时才具有。
※ 模拟示波器的带宽很少能高于400 MHz,而某些数字示波器具有超过50GHz的带宽。
3.确定你所需要的通道数
一般来讲,你所需要的通道数取决于被测对象。目前以双通道示波器最为流行。然而对大多数工程师来讲,对于某些应用,四通道示波器更为有用。
下面几点应该予以考虑:
※ 你需要在同一触发事件捕获多通道信号吗?如果是这样的话,请选用每个通道可以同时采样或独立A/D变换的示波器。如果你观测的信号是重复信号,那么就不一定要求同时采集了。
※ 某些示波器是2+2形式的,也就是说,其中两个通道是全功能的,而另外两个通道是衰减范围受 限制的辅助通道。在这种情况下,两个A/D变换器由四个通道共享。辅助通道在你观测数字信号时可以提供额外的灵活性。
※ 对于双通道示波器,外触发可能很有用处。它可以用一无需观测的信号作为外触发源,而不占用示波器的输入通道。
※ 如果你要进行数字定时测量,要求超过四个通道的示波器时,你不妨考虑使用逻辑分析仪。尽管此时你放弃了测量的垂直分辨率,但你获得了多个通道以及额外的触发及分析能力。
4.确定你所需要的采样速率
对于单次信号测量,最关键的性能指标是采样速率,即示波器对于输入信号进行“快速拍照”的速率。高采样速率可以产生高实时带宽以及高的实时分辨率。
大多数示波器生产厂商采用采样速率与实时带宽为4:l(如果采用数字重构技术)或10:1(没有数字重构)的比例来防止出现假波。
某些示波器提供了独立控制采样速率的功能,这样你可以同时调节采样速率和屏幕显示的数据量(时基),使二者设置不必互相牵制。这一特征可以使你保持你所希望的时间分辨率来观测波形。
你应该牢记下面几点:
※ 示波器的标称采样速率可能只适用于单通道采样。某些示波器在多通道均处于工作状态时采样率将降低。这样由于改变了示波器的采样速率与信号带宽之间的关系,所以增加了出现假波的可能性。
※ 由于记录长度的限制,大多数示波器只在最快水平扫速条件下才以最大速度采样。在水平扫速变慢时,采样速率将降低。
※ 在捕捉单次事件时,应同时考虑存储深度和采样速率的重要性。如果你需要不间断连续观测,你需要拥有既可以保持很高的时间分辨率,又具有足够的内存来存储整个事件的示波器。
※ 示波器的采样速率与显示更新速率无关。
5、确定你所需要的存储深度
你所需要的示波器存储深度取决于要求的总时间测量范围以及要求的时间分辨率。如果你想以高分辨率存储长时间段信号,那么你需要选择深存储示波器。这样,你可以在水平扫描速度低的情况下,采用高采样速率。由此将大大减少出现假波的机会,并且获得更多的波形细节信息。
下列算式可以帮助你计算你所希望的存储深度。
存储深度=时间范围/分辨率
深存储的缺点是由于示波器需要处理更多的数据,所以响应速度将变慢。
6、考察评估触发能力
很多通用示波器用户习惯于采用边沿触发。在某些应用场合,如果示波器具有其它触发能力,你将会发现它对你的测量会很有帮助。先进的触发功能可以隔离出你所希望观测的事件。在数字应用领域,使示波器触发在多通道之间的特定模式对解决问题很有用处。此外,状态触发可以用来使模式触发与外时钟沿同步。毛刺触发在正或负毛刺发生的时刻或者一脉冲宽于或窄于设定的宽度。这些特征对故障查错尤其重要,触发在错误发生的时刻,观察前向事件(采用延时或水平位置旋钮)来确定问题产生的原因。如果需要更高级的逻辑触发功 能,你仍然可以考虑采用逻辑分析仪。
电视信号触发可以触发在场以及你需要观测的特定行上。在某些示波器上,该特征是选项功能。
7、评价毛刺捕捉能力
三个重要因素影响示波器的毛刺捕捉能力:
更新速率:数字示波器必须首先捕获数据然后进行处理,最后进行显示。示波器在一秒钟内可以完成这三个过程的次数称为更新速率。更新速率快的示波器捕捉偶发毛刺的机会比较高。采用多处理器结构的示波器比传统的单处理器结构示波器具有更快的更新速率,使它更适用于捕捉偶发事件。多处理器结构可以产生与模拟示波器相近的显示吞吐能力和响应速度。
峰值检测能力:大多数数字示波器在低扫速时将丢掉采样点,从而降低了有效采样速率。由此引发了这样一个问题,在设定成快速时基时很容易观察到的窄脉冲在扫速低时消失了。然而对于峰值检测或毛刺检测这一特殊采样模式,在所有的扫描速度下均维持最大采样速率,把每一采样周期获得的最大和最小值记录下来。可以检测到的最小毛刺只与示波器的采样速率有关。
毛刺触发:具有毛刺触发功能的示波器可使你隔离出难以发现的毛刺并且触发在毛刺发生时刻。这一功能可以帮助你发现电路运行过程中发生异常情况的原因。
有关触发功能可参考第六个步骤
8、确定你所需要的分析功能
利用自动测量以及示波器内置的分析能力,你可以即容易又省时地完成工作。数字示波器通常具有模拟示波器不可能拥有的顺序测量功能和分析选件。
算术运算功能包括有加、减、乘、除、积分和微分。统计测量(最小、最大和平均)可以定量描述测量的不确定性,这在测量噪声特征以及定时容限时是很有价值的。有些数字示波器还可以提供FFT功能。具有—卜述所有先进功能的示波器可能在价格上要高一些,所以你自己应该决定花费额外的钱是否物有所值。你最好还是根据实际应用来选择拥有这些特征的示波器。
9、评价存档能力
大多数数字示波器可以通过GPIB、RS-232或者并行口与PC,打印机或绘图仪相连接。但你应弄清楚可以提供哪一种接口,可与哪种类型打印机相匹配。从激光和喷墨打印机输出的效果比热打印输出的质量要高得多,这一点你应该心中有数。
利用带有软盘驱动器或软件包的数字示波器,你可以方便地将波形的图像和波形数据传送至PC机。如果你想在一份报告中包含一幅捕捉到的屏幕图像或者想要把波形数据转换成表格,那么这些特征会节省时间,而且减少很多麻烦。
10、试用你要选择的示波器
如果你已经完成上述九个步骤,并且将满足测量要求的示波器局限在几种型号之内。现在是你试用和面对面比较的时候了。将示波器短时间内租用几天,花点功夫做一下全面评价。
在使用每一种示波器时都应考虑下面几种因素:
易于使用:在你试用期间,评价一下每台示波器的易使用性。有专门设计且非常好用的手轮吗?利用手轮你可以对诸如垂直灵敏度,水平扫描速度,跟踪位置和触发电平等进行直接调整吗?从一个操作到另一操作你需要按几次按键吗?
你可以集中精力于被测试电路的同时直观地操作示波器吗?
显示响应:无论你用示波器作维修还是大量采集数据,显示响应都是一关键因素,在你作评价时对这一点要特别注意,当你改变V/div,△Time/div及设定位置时,示波器响应快吗?在打开测量功能时作同样的试验,响应明显变慢了。
在你已经考虑过上述所有这些问题并且评估过准备选用哪一种示波器之后,你已经可以明确选定哪一种示波器真正满足你的要求。如果你仍然犹豫不决,你可以与其它示波器用户进行磋商或与供应商的技术人员联系。

使用特权

评论回复
板凳
mas888|  楼主 | 2012-9-29 15:24 | 只看该作者
八、电容式称重传感器的缺点有哪些

称重传感器是一种将质量信号转变为可测量的电信号输出的装置。电容式称重传感器利用电容器振荡电路的振荡频率f与极板间距d 的正比例关系工作。极板有两块,一块固定不动,另一块可移动。在承重台加载被测物时,两极板之间的距离发生变化,电路的振荡频率也随之变化。测出频率的变化即可求出承重台上被测物的质量。电容式传感器主要优点有耗电量少,造价低,但它同时也有三个主要缺点。
缺点一:输出阻抗高,负载能力差
电容式称重传感器的容量受其电极的几何尺寸等限制不易做得很大,一般为几十到几百微法,甚至只有几个微法。因此,电容式称重传感器的输出阻抗高,因而负载能力差,易受外界干扰影响产生不稳定现象,严重时甚至无法工作。必须采取妥善的屏蔽措施,从而给设计和使用带来不便。容抗大还要求传感器绝缘部分的电阻值极高,否则绝缘部分将作为旁路电阻而影响仪器的性能,为此还要特别注意周围的环境如温度、清洁度等。若采用高频供电,可降低电容式称重传感器的输出抗阻,但高频放大、传感器远比低频的复杂,且寄生电容影响大,不易保证工作的稳定性。
缺点二:输出特性非线性
电容式称重传感器的输出特性是非线性的,虽采用差分型来改善,但不可能完全消除。其他类型的电容传感器只有忽略了电场的边缘效应时,输出特性才呈线性。否则边缘效应所产生的附加电容量将于传感器电容器直接叠加,使输出特性非线性。
缺点三:寄生电容影响大
电容式称重传感器的初始电容量小,而连接传感器和电子线路的引线电容、电子线路的杂散电容以及传感器内板极与周围导体构成的电容等所谓寄生电容缺较大,不仅降低了传感器的灵敏度,而且这些电容常常是随机变化的,将使仪器工作很不稳定,影响测量精度。因此对电缆的选择、安装、接法都有严格的要求。例如,采用屏蔽性好、自身分布电容小的高频电线作为引线,引线粗而短,要保证仪器的杂散电容小而稳定等等,否则不能保证高的测量精度。
应该指出,随着材料、工艺、电子技术,特别是集成技术的高速发展,使电容式称重传感器的优点得到发扬而缺点不断在克服。电容传感器正逐渐成为一种高灵敏度、高精度,在动态、低压及一些特殊测量方面大有发展前途的传感器。


九、MEMS压力传感器结构及其工作原理

目前的MEMS压力传感器有硅压阻式压力传感器和硅电容式压力传感器,两者都是在硅片上生成的微机械电子传感器。
硅压阻式压力传感器是采用高精密半导体电阻应变片组成惠斯顿电桥作为力电变换测量电路的,具有较高的测量精度、较低的功耗和极低的成本。惠斯顿电桥的压阻式传感器,如无压力变化,其输出为零,几乎不耗电。
MEMS硅压阻式压力传感器采用周边固定的圆形应力杯硅薄膜内壁,采用MEMS技术直接将四个高精密半导体应变片刻制在其表面应力最大处,组成惠斯顿测量电桥,作为力电变换测量电路,将压力这个物理量直接变换成电量,其测量精度能达0.01-0.03%FS。硅压阻式压力传感器上下二层是玻璃体,中间是硅片,硅片中部做成一应力杯,其应力硅薄膜上部有一真空腔,使之成为一个典型的绝压压力传感器。应力硅薄膜与真空腔接触这一面经光刻生成电阻应变片电桥电路。当外面的压力经引压腔进入传感器应力杯中,应力硅薄膜会因受外力作用而微微向上鼓起,发生弹性变形,四个电阻应变片因此而发生电阻变化,破坏原先的惠斯顿电桥电路平衡,电桥输出与压力成正比的电压信号。
电容式压力传感器利用MEMS技术在硅片上制造出横隔栅状,上下二根横隔栅成为一组电容式压力传感器,上横隔栅受压力作用向下位移,改变了上下二根横隔栅的间距,也就改变了板间电容量的大小,即△压力=△电容量。


十、智能传感器的性能特点有哪些

一般的传感器只能作为敏感元件,须配上变换仪表来检测物理量、化学量等的变化。随着微电子技术的发展,出现了智能仪表。智能仪表采用超大规模集成电路,利用嵌入软件协调内部操作,在完成输入信号的非线性补偿、零点错误、温度补偿、故障诊断等基础上,还可完成对工业过程的控制,使控制系统的功能进一步分散。智能传感器集成了传感器、智能仪表全部功能及部分控制功能,具有很高的线性度和低的温度漂移,降低了系统的复杂性、简化了系统结构。特点如下:
1、一定程度的人工智能是硬件与软件的结合体,可实现学习功能,更能体现仪表在控制系统中的作用。可以根据不同的测量要求,选择合适的方案,并能对信息进行综合处理,对系统状态进行预测。
2、多敏感功能将原来分散的、各自独立的单敏传感器集成为具有多敏感功能的传感器,能同时测量多种物理量和化学量,全面反映被测量的综合信息。
3、精度高、测量范围宽随时检测出被测量的变化对检测元件特性的影响,并完成各种运算,其输出信号更为精确,同时其量程比可达100:1,最高达 400:1,可用一个智能传感器应付很宽的测量范围,特别适用于要求量程比大的控制场合。
4、通信功能可采用标准化总线接口,进行信息交换,这是智能传感器的关键标志之一。
智能传感器的出现将复杂信号由集中型处理变成分散型处理,即可以保证数据处理的质量,提高抗干扰性能。同时又降低系统的成本。它使传感器由单一功能、单一检测向多功能和多变量检测发展,使传感器由被动进行信号转换向主动控制和主动进行信息处理方向发展,并使传感器由孤立的元件向系统化、网络化发展。

使用特权

评论回复
地板
xiaox314| | 2013-3-5 22:12 | 只看该作者
好东西

使用特权

评论回复
5
ljm041128| | 2013-4-1 17:10 | 只看该作者
楼主,氧传感器里含有铂元素吗?我怎么觉得你说的氧传感器的中毒方式有点象可燃气的传感器啊!

使用特权

评论回复
6
mhfs| | 2013-4-19 18:28 | 只看该作者
:)学习中

使用特权

评论回复
7
lhhsea| | 2013-4-24 14:18 | 只看该作者
学习了

使用特权

评论回复
发新帖 我要提问
您需要登录后才可以回帖 登录 | 注册

本版积分规则

9

主题

345

帖子

7

粉丝